• Non ci sono risultati.

Prove that Z 1 0 xln(1 + x) 1 + x2 dx= π2 96 +(ln(2))2 8

N/A
N/A
Protected

Academic year: 2021

Condividi "Prove that Z 1 0 xln(1 + x) 1 + x2 dx= π2 96 +(ln(2))2 8 "

Copied!
1
0
0

Testo completo

(1)

Problem 11966

(American Mathematical Monthly, Vol.124, March 2017) Proposed by C. I. V˘alean (Romania).

Prove that

Z 1

0

xln(1 + x)

1 + x2 dx= π2

96 +(ln(2))2 8 .

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. Let

F(a) = Z 1

0

xln(1 + ax) 1 + x2 dx, then the derivative is

F(a) = Z 1

0

x2

(1 + x2)(1 + ax)dx= 1 a2+ 1

Z 1

0

 ax− 1 1 + x2 + 1

1 + ax

 dx

= 1

a2+ 1

 a

2ln(1 + x2) − arctan(x) +ln(1 + ax) a

1

0

= 1

a2+ 1

 a

2ln(2) −π

4 +ln(1 + a) a



=

1 2ln(2)a

a2+ 1 −

π 4

a2+ 1 −

aln(1 + a)

a2+ 1 +ln(1 + a)

a .

Let

I:=

Z 1

0

xln(1 + x) 1 + x2 dx, then it follows that

I= F (1) = F (0) + Z 1

0

F(a) da

= 0 + 1 2ln(2)

Z 1 0

a

a2+ 1da −π 4

Z 1 0

1

a2+ 1da − I + Z 1

0

ln(1 + a)

a da

= 1

2ln(2) ln(a2+ 1) 2

1

0

− π

4 [arctan(a)]10− I + π2 12

= −I + π2

48+(ln(2))2 4 , where we used the known fact

Z 1

0

ln(1 + a) a da=

X

k=1

(−1)k+1 Z 1

0

ak−1 k da=

X

k=1

(−1)k+1 k2 = π2

12. Therefore, we may conclude

I= π2

96 +(ln(2))2 8 .



Riferimenti