• Non ci sono risultati.

Problem 11152 (American Mathematical Monthly, Vol.112, May 2005) Proposed by M. Ivan (Romania). Evaluate I = Z

N/A
N/A
Protected

Academic year: 2021

Condividi "Problem 11152 (American Mathematical Monthly, Vol.112, May 2005) Proposed by M. Ivan (Romania). Evaluate I = Z"

Copied!
2
0
0

Testo completo

(1)

Problem 11152

(American Mathematical Monthly, Vol.112, May 2005) Proposed by M. Ivan (Romania).

Evaluate

I = Z 1

0

log(cos(πx/2)) x(1 + x) dx.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

First we note that the integral can be decomposed in this way I =

Z 1

0

log(cos(πx/2))

x dx +

Z 1

0

log(cos(πx/2)) 1 + x dx =

Z 1

0

log(cos(πx/2))

x dx −

Z 2

1

log(sin(πx/2))

x dx.

Now we show that a more general identity holds: for any integer n ≥ 0

I = −n(log 2)2+ Z 1/2n

0

log(cos(πx/2))

x dx −

Z 1/2n−1 1/2n

log(sin(πx/2))

x dx.

We already proved the identity for n = 0. The inductive step goes as follows:

log(sin(πx/2)) = log(sin(2πx/4)) = log(2 sin(πx/4) cos(πx/4))

= log 2 + log(sin(πx/4)) + log(cos(πx/4)) and therefore

Z 1/2n−1 1/2n

log(sin(πx/2))

x dx = log 2

Z 1/2n−1 1/2n

1 xdx +

Z 1/2n−1 1/2n

log(sin(πx/4))

x dx +

Z 1/2n−1 1/2n

log(cos(πx/4))

x dx

= (log 2)2+ Z 1/2n

1/2n+1

log(sin(πx/2))

x dx +

Z 1/2n 1/2n+1

log(cos(πx/2))

x dx.

Hence

I = −(n + 1)(log 2)2+

Z 1/2n+1 0

log(cos(πx/2))

x dx −

Z 1/2n 1/2n+1

log(sin(πx/2))

x dx.

Moreover, since

sin(πx/2) = πx/2 + x3f (x) = (πx/2)(1 + 2x2f (x)/π) where f (x) is a continuous bounded map in the interval (0, 2), then

Z 1/2n−1 1/2n

log(sin(πx/2))

x dx =

Z 1/2n−1 1/2n

log(πx/2)

x dx +

Z 1/2n−1 1/2n

log(1 + 2x2f (x)/π)

x dx

= 1

2

h(log(πx/2))2i1/2n−1

1/2n +

Z 1/2n−1 1/2n

log(1 + 2x2f (x)/π)

x dx

= log(2) log(π/√

2) − n(log 2)2+

Z 1/2n−1 1/2n

log(1 + 2x2f (x)/π)

x dx

Finally

I = − log(2) log(π/√ 2) +

Z 1/2n 0

log(cos(πx/2))

x dx −

Z 1/2n−1 1/2n

log(1 + 2x2f (x)/π)

x dx

(2)

and, taking the limit as n goes to infinity, we find that the two integrals vanish because the integrand functions are bounded in the corresponding shrinking intervals. Hence

I = − log(2) log(π/√

2) ≈ −0.5532397859.



Riferimenti