• Non ci sono risultati.

Set U ij = √ 1 n ω n(i−1)(j−1) , i, j = 1, . . . , n, ω n = e i2πn. U is unitary symmetric.

N/A
N/A
Protected

Academic year: 2021

Condividi "Set U ij = √ 1 n ω n(i−1)(j−1) , i, j = 1, . . . , n, ω n = e i2πn. U is unitary symmetric. "

Copied!
12
0
0

Testo completo

(1)

Examples of unitary U , U e 1 = √ 1

n e , and the corresponding L = {Ud(z)U H } Exercise. For such L compute L A where A is the stochastic by columns tridiagonal matrix in toe 1qr, and compare its eigenvalues (in particular, the second one λ 2 (L A )) with those of A. If they do not fill our requirements, introduce µ 6= I so that L A , L = {U(µ ◦ Z)U H }, does what we want (f.i.

|λ 2 (A)| ≤ |λ 2 (L A )| < 1)).

Circulant

Set U ij = √ 1 n ω n (i−1)(j−1) , i, j = 1, . . . , n, ω n = e i

n

. U is unitary symmetric.

Note that U e 1 = √ 1 n e . Set C = {Ud(z)U H } = {Ud(z)U }. Then C = {p(Π)}, where Π is the following n × n 0, 1-matrix

Π =

 1

1

· 1 1

(see [ ]). The matrices A of C are Toeplitz and satisfy the cross-sum condi- tion (under suitable border conditions). The matrix A of C whose first row is z T is here denoted C(z):

C(z) = Ud(Uz)d(Ue

1

)

−1

U = √ nU d(U z)U =

z

1

z

2

z

n

z

n

z

1

z

2

z

n

· ·

· z

2

z

2

z

n

z

1

 .

An orthogonal basis for C is {J 1 , J 2 , . . . , J n } where J 1 = I, J 2 = Π, J s = Π s−1 , s = 3, . . . , n.

Note that the J s are 0, 1-matrices orthogonal each other with respect the Frobenius scalar product (·, ·) for any fixed n. Given A ∈ C n×n write the best approximation of A in C:

C A = 1 n

n

X

s=1

(J s , A)J s = U d  1 n

n

X

s=1

(J s , A)z s

 U

where z s is defined as the vector of the eigenvalues of J s . Note that z s =

√ nU e s since J s = √

nU d(U e s )U . Thus C A = √

nU d(U 1 n

n

X

s=1

(J s , A)e s )U .

In the following may be we will use the symbol U C in order to denote the

above unitary matrix defining the circulant algebra C.

(2)

Haar Set

Q 1 = 1, Q n =

 ee T 1 Q

n

Q

n 2

2

−ee T 1



, n = 2, 4, 8, . . . , 2 k .

D 1 = 1, D n =

 D

n

2

S

n

2

0

0 D

n

2

S

n

2

 , S

n

2

= diag ( 1

√ 2 , 1, . . . , 1), n = 2, 4, 8, . . . , 2 k .

Set U = U n = Q n D n . Examples:

Q 2 D 2 =

 1 1 1 −1

 " 1

√ 2

√ 1 2

#

;

Q 4 D 4 =

1 1 1

1 1 −1

1 1 −1 1 −1 −1

√ 1

4 1

√ 2

√ 1

4 1

√ 2

;

Q

8

D

8

=

1 1 1 1

1 1 1 −1

1 1 1 −1

1 1 −1 −1

1 1 1 −1

1 1 −1 −1

1 1 −1 −1

1 −1 −1 −1

1

√8 1

√2 1

√4 1

√2 1

√8 1

√2 1

√4 1

√2

;

Q

16

D

16

=

1 1 1 1 1

1 1 1 1 −1

1 1 1 1 −1

1 1 1 −1 −1

1 1 1 1 −1

1 1 1 −1 −1

1 1 1 −1 −1

1 1 −1 −1 −1

1 1 1 1 −1

1 1 1 −1 −1

1 1 1 −1 −1

1 1 −1 −1 −1

1 1 1 −1 −1

1 1 −1 −1 −1

1 1 −1 −1 −1

1 −1 −1 −1 −1

·D

16

,

D

16

=

 D

8

S

8

D

8

S

8



, S

8

= diag ( 1

√ 2 , 1, 1, 1, 1, 1, 1, 1).

Note that

U n = Q n D n =

 ee T

1 Q

n

2

Q

n

2

−ee T 1

 D

n

2

S

n

2

D

n

2

S

n

2

 =

√n 1 ee T

1 U

n

2

S

n

2

U

n

2

S

n

2

√n 1 ee T 1

 .

(3)

(See [ ]; for a different order of the columns in Q see Appendix 2). By construction, the matrices U and U T are unitary real matrices defining fast discrete transforms. Note that U e 1 = √ 1 n e .

Consider the matrix algebra L associated to the transform U: L = {Ud(z)U H } = {QDd(z)DQ T }.

Exercise: Find an orthogonal basis {J 1 , J 2 , . . . , J n }, n = 2 k , for L made up with matrices whose entries are 0, 1 or −1. Solution: the following rank-one 0, 1, −1-matrices form a basis for L (n = 4, n = 8, n = 2 k ):

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

= Qe

1

e

T 1

Q

T

,

1 1 −1 −1

1 1 −1 −1

−1 −1 1 1

−1 −1 1 1

= Qe

3

e

T 3

Q

T

,

1 −1

−1 1

= Qe

4

e

T 4

Q

T

,

 1 −1

−1 1

= Qe

2

e

T 2

Q

T

;

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

= Qe

1

e

T 1

Q

T

,

1 1 1 1 −1 −1 −1 −1

1 1 1 1 −1 −1 −1 −1

1 1 1 1 −1 −1 −1 −1

1 1 1 1 −1 −1 −1 −1

−1 −1 −1 −1 1 1 1 1

−1 −1 −1 −1 1 1 1 1

−1 −1 −1 −1 1 1 1 1

−1 −1 −1 −1 1 1 1 1

= Qe

5

e

T 5

Q

T

,

1 1 −1 −1

1 1 −1 −1

−1 −1 1 1

−1 −1 1 1

= Qe

7

e

T 7

Q

T

,

1 1 −1 −1

1 1 −1 −1

−1 −1 1 1

−1 −1 1 1

= Qe

3

e

T 3

Q

T

,

1 −1

−1 1

= Qe

8

e

T 8

Q

T

,

1 −1

−1 1

= Qe

6

e

T 6

Q

T

,

1 −1

−1 1

= Qe

4

e

T 4

Q

T

,

 1 −1

−1 1

= Qe

2

e

T 2

Q

T

;

(4)

ee T = Qe 1 e T

1 Q T , J s,i =

 1 2

s−1

−1 2

s−1

−1 2

s−1

1 2

s−1



⊗ µ (

n 2s

)

i = Qe e T

∗ Q T , ∗ = (n − 2 s−1 + 1) − 2 s (i − 1), i = 1, . . . , 2 n

s

, s = 1, 2, . . . , log 2 n = k

(1 r is the r ×r matrix with ones everywhere; µ (r) i is the r ×r matrix with 1 in position i, i and 0 elsewhere). Note that if X, Y are two matrices from such basis, then (X, X) = n 2 , n 4

2

, n 16

2

, . . . , n

2

2

2k−2

= 4, and (X, Y ) = 0 if X 6= Y . This implies, in particular, that we have immediately a formula for the best approximation of A ∈ C n×n in L:

L A = (ee T , A) n 2 ee T +

log

2

n

X

s=1

1 2 2s

n 2s

X

i=1

(J s,i , A)J s,i .

Observe that for n = 4 and n = 8 the generic matrix in L has the following structure:

a + b a − b c c a − b a + b c c c c a + d a − d c c a − d a + d

 ,

(a + d) + c (a + d) − c a − d a − d b b b b

(a + d) − c (a + d) + c a − d a − d b b b b

a − d a − d (a + d) + e (a + d) − e b b b b

a − d a − d (a + d) − e (a + d) + e b b b b

b b b b (a + f ) + g (a + f ) − g a − f a − f

b b b b (a + f ) − g (a + f ) + g a − f a − f

b b b b a − f a − f (a + f ) + h (a + f ) − h

b b b b a − f a − f (a + f ) − h (a + f) + h

 .

Note also that there exists v such that v T Q = e T . See below, first for n = 8, and then, for a generic n = 2 k :

v =

(x + 1 +

12

) +

14

(x +

12

) +

14

(x + 1) +

14

(x) +

14

− − −−

(x + 1) +

12

(x) +

12

− − −−

x + 1

− − −−

x

 , x = 1

2

2

−1, Q

8

=

1 1 1 1

1 1 1 −1

1 1 1 −1

1 1 −1 −1

1 1 1 −1

1 1 −1 −1

1 1 −1 −1

1 −1 −1 −1

(5)

(for any x we have v

T

(Q

8

e

i

) = 1 ∀ i ≥ 2; then x is chosen so that v

T

(Q

8

e

1

) = 1),

v =

(x + · · ·) +

2k1−1

(x + · · ·) +

2k1−1

· · · (x + · · ·) +

2k1−1

− − − − −−

· · ·

− − − − −−

(x + 1 +

12

) +

14

(x +

12

) +

14

(x + 1) +

14

(x) +

14

− − − − −−

(x + 1) +

12

(x) +

12

− − − − −−

x + 1

− − − − −−

x

, x = 1 2

k−1

− 1.

As a consequence, we can define the matrix L r (z) = QDd(DQ T z )d(DQ T v ) −1 DQ T = QDd(DQ T z )d(De) −1 DQ T = QD 2 d(Q T z )Q T , i.e. the matrix of L whose v-

row is z T (v T L r (z) = z T ), and the matrix algebra L can be represented as L = {L r (z)}. For example, obtain z such that L r (z) = QD 2 d(Q T z )Q T = Qe i e T i Q T . Such equality is satisfied iff D 2 Q T z = e i iff ((DQ T ) −1 = QD)

z = Qe i , QD 2 d(Q T z )Q T = Qe i e T i Q T .

In the following may be we will use the symbol U L in order to denote the

above unitary matrix defining the elle algebra L.

(6)

Jacobi Set U ij = q

2

n δ j cos (2i−1)(j−1)π

2n , i, j = 1, . . . , n, where δ j = √ 1

2 if j = 1, and δ j = 1 otherwise. The matrix U is unitary real. Note that U e 1 = 1 n e . Set Υ = {Ud(z)U H } = {Ud(z)U T }. Then Υ = {p(T )}, where T is the following tridiagonal n × n 0, 1-matrix

T =

 1 1

1 0 1

. .. ... ...

1 0 1

1 1

(see [ ]). The matrices A of Υ are symmetric and persymmetric and satisfy the cross-sum condition (like the matrices of η, see below). The border conditions are: a 0,i = a 1,i , i = 1, . . . , n.

Exercise. Find, at least in case n = 2 k , an orthogonal basis {J 1 , J 2 , . . . , J n } for Υ made up with matrices whose entries are 0, 1 or −1. Given A ∈ C n×n write the best approximation of A in Υ:

Υ A =

n

X

s=1

(J s , A)

(J s , J s ) J s = U d  X n

s=1

(J s , A) (J s , J s ) z s

 U T

where z s is defined as the vector of the eigenvalues of J s . Observe that (U T e 1 ) i 6= 0 ∀ i, thus the matrix Υ(z) in Υ with first row z T is well de- fined, Υ(z) = U d(U T z )d(U T e 1 ) −1 U T , and Υ can be represented as Υ = {Υ(z)}. Exercise: Find z such that Υ(z) = J s and then observe that z s = d(U T e 1 ) −1 U T z .

In the following may be we will use the symbol U Υ in order to denote the

above unitary matrix defining the upsilon algebra Υ.

(7)

Hartley

Set U ij = √ 1 n ( cos 2π(i−1)(j−1)

n + sin 2π(i−1)(j−1)

n ), i, j = 1, . . . , n. The matrix U is unitary real symmetric. Note that U e 1 = √ 1 n e . Set H = {Ud(z)U H } = {Ud(z)U}. Then H = C S + JΠC SK , where C S is the algebra of symmetric circulants and C SK is the space of skew-symmetric circulants (see [ ]). The matrices of H are symmetric.

Exercise. Find, at least in case n = 2 k , an orthogonal basis {J 1 , J 2 , . . . , J n } for H made up with matrices whose entries are 0, 1 or −1. Given A ∈ C n×n write the best approximation of A in H:

H A =

n

X

s=1

(J s , A)

(J s , J s ) J s = U d  X n

s=1

(J s , A) (J s , J s ) z s

 U

where z s is defined as the vector of the eigenvalues of J s . Observe that the matrix H(z) in H with first row z T is well defined, H(z) = Ud(Uz)d(Ue 1 ) −1 U =

√ nU d (U z)U , and H can be represented as H = {H(z)}. Exercise: Find z such that H(z) = J s and then observe that z s = √

nU z.

In the following may be we will use the symbol U H in order to denote the

above unitary matrix defining the Hartley algebra H.

(8)

Eta Set

U i,1 = √n 1 , U i,j = q

2

n cos (2i−1)(j−1)π

n , j = 2, . . . , d 1 2 n e, U i,

1

2

n+1 = (−1)

i−1

√n if n is even, U ij = q

2

n sin (2i−1)(j−1)π

n , j = b 1 2 n + 2c, . . . , n, i = 1, . . . , n. The matrix U is unitary real. Note that U e 1 = √ 1

n e . Set η = {Ud(z)U H } = {Ud(z)U T }. Then η = C S + JC S , where C S is the algebra of symmetric circulants (see [ ]). The matrices A of η are symmetric and persymmetric and satisfy the cross-sum condition. The border conditions are: a 0,i = a 1,n+1−i , i = 1, . . . , n.

Exercise. Find, at least in case n = 2 k , an orthogonal basis {J 1 , J 2 , . . . , J n } for η made up with matrices whose entries are 0, 1 or −1. A possible such basis, for n = 4, 8, is displayed here below

 1 1 1 1

1 1 1 1

 ,

1 1 1 1 1 1 1 1

 ,

1 −1

−1 1

1 −1

−1 1

 ,

1 −1

−1 1 1 −1

−1 1

;

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 ,

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 ,

1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1

 ,

1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1

 ,

1 1 −1 −1

1 1 −1 −1

1 1 −1 −1

1 1 −1 −1

−1 −1 1 1

−1 −1 1 1

−1 −1 1 1

−1 −1 1 1

 ,

1 −1 −1 1

1 −1 −1 1

−1 1 1 −1

−1 1 1 −1

−1 1 1 −1

−1 1 1 −1

1 −1 −1 1

1 −1 −1 1

 ,

1 −1 −1 1

−1 −1 1 1

−1 −1 1 1

−1 1 1 −1

−1 1 1 −1

1 1 −1 −1

1 1 −1 −1

1 −1 −1 1

 ,

1 −1 −1 1

1 1 −1 −1

1 1 −1 −1

−1 1 1 −1

−1 1 1 −1

−1 −1 1 1

−1 −1 1 1

1 −1 −1 1

.

(9)

Exercise: find such basis for generic n = 2 k . Note that if n = 4 = 2 2 , (J s , J s ) = 8 = 2 3 ; if n = 8 = 2 3 , (J s , J s ) = 32 = 2 5 ; and, we conjecture, if n = 2 k , (J s , J s ) = 2 2k−1 . Given A ∈ C n×n write the best approximation of A in η:

η A = 1 2 2k−1

2

k

X

s=1

(J s , A)J s = U d  1 2 2k−1

2

k

X

s=1

(J s , A)z s

 U T

where z s is defined as the vector of the eigenvalues of J s . Observe that the matrix η(z) in η with first row z T is well defined, η(z) = U d(U T z )d(U T e 1 ) −1 U T , and η can be represented as η = {η(z)}. Exercise: Find z such that η(z) = J s and then observe that z s = d(U T e 1 ) −1 U T z .

In the following may be we will use the symbol U η in order to denote the above unitary matrix defining the eta algebra η.

P.S.

Another orthogonal basis of η:

 1

1 1

1

 ,

1 1

1 1

1 1

1 1

 ,

1 1 1

1

 ,

−1 1

−1 1

1 −1

1 −1

;

I,

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

 ,

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

 ,

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

 ,

1 1

1 1 1

1 1

1

 ,

−1 1

−1 1

−1 1

−1 1

1 −1

1 −1

1 −1

1 −1

 ,

1 −1 −1 1

−1 −1 1 1

−1 −1 1 1

−1 1 1 −1

−1 1 1 −1

1 1 −1 −1

1 1 −1 −1

1 −1 −1 1

 ,

−1 1 −1 1

−1 1 −1 1

1 −1 1 −1

1 −1 1 −1

−1 1 −1 1

−1 1 −1 1

1 −1 1 −1

1 −1 1 −1

.

(10)

APPENDIX (The anti-Haar transform and the corresponding algebra) Set U = DQ T . The matrix U is unitary real. Set L = {Ud(z)U H } = {Ud(z)U T }. Since (U T e 1 ) i = ( √ 1 n e ) i 6= 0 ∀ i, the algebra L can be rep- resented as L = {L(z)}, where L(z) is the matrix of L with first row z T , L(z) = Ud(U T z )d(U T e 1 ) −1 U T = √

nDQ T d (QDz)QD. Write L(z):

First problem: how to choose the order of the columns of Q ? Assume n = 4. First choice:

Q =

1 1 1

1 1 −1

1 −1 1

1 −1 −1

 , D =

1 2 1

2 1

√ 2

√ 1 2

, L(z) =

z 1 z 2 z 3 z 4

z 2 z 1 − z 3 z 3 −z 4 z 3 z 3 z 1 + z 2

z 4 −z 4 z 1 − z 2

 .

Second choice:

Q =

1 −1 −1 1 1 −1

1 1 −1

1 1 1

 , D =

1

2 1

√ 2 1

2 1

√ 2

, L(z) =

z 1 z 2 z 3 z 4

z 2 z 1 − z 3 −z 2 z 3 −z 2 z 1 z 4

z 4 z 4 z 1 + z 3

 .

Finally, the third, definitive choice:

Q =

1 1 1

1 1 −1

1 1 −1 1 −1 −1

 , D =

1

2 1

√ 2 1

2 1

√ 2

, L(z) =

z 1 z 2 z 3 z 4

z 2 z 1 − z 3 −z 2 z 3 −z 2 z 1 z 4

z 4 z 4 z 1 + z 3

 .

n = 8:

Q = [e · · ·], D =

1 2 √

2 1

√ 2 1

2 1

√ 2

idem

 ,

L(z) =

z

1

z

2

z

3

z

4

z

5

z

6

z

7

z

8

z

2

z

1

− z

5

− √

2z

3

− √

2z

2

−z

2

z

3

− √

2z

2

z

1

− z

5

2z

4

−z

3

z

4

√ 2z

4

z

1

− z

5

+ √

2z

3

−z

4

z

5

−z

2

−z

3

−z

4

z

1

z

6

z

7

z

8

z

6

z

6

z

1

+ z

5

− √

2z

7

− √ 2z

6

z

7

z

7

− √

2z

6

z

1

+ z

5

√ 2z

8

z

8

z

8

√ 2z

8

z

1

+ z

5

+ √ 2z

7

.

(11)

APPENDIX 1 (The first investigations on the Haar matrix algebra)

Q = [e · · ·], D = diag ( 1 n , . . .), QD and DQ T are real unitary. Investigate the matrix algebras {DQ T d (z)QD : z ∈ C n } and {QDd(z)DQ T : z ∈ C n }.

{QDd(z)DQ T : z ∈ C n } (the other one is investigated in APPENDIX) M d(M T z )d(M T v ) −1 M −1 , v T (·) = z T , M = QD: v = e 1 is not ok, what v is ok ? . . . Write QDd(DQ T z )DQ T = QD 3 d(Q T z )Q T :

n = 4 : Q =

1 1 1

1 1 −1

1 1 −1 1 −1 −1

 , D =

1

2 1

√ 2 1

2 1

√ 2

 ,

QD 3 d(Q T z )Q T =

a + b a − b c c a − b a + b c c

c c a + d a − d c c a − d a + d

=

s t c c

t s c c

c c s+t 2 + d s+t 2 − d c c s+t 2 − d s+t 2 + d

 ,

a = 1 4 (z 1 + z 2 ), b = 1

2 √

2 (z 1 − z 2 ), c = 1 4 (z 3 + z 4 ), d = 21

2 (z 3 − z 4 ), a + b = s, a − b = t, a = s+t 2 ;

n = 8: Q = [e · · ·], D =

1 2 √

2 1

√ 2 1

2 1

√ 2

idem

 ,

QD

3

d(Q

T

z )Q

T

=

(a + d) + c (a + d) − c a − d a − d b b b b

(a + d) − c (a + d) + c a − d a − d b b b b

a − d a − d (a + d) + e (a + d) − e b b b b

a − d a − d (a + d) − e (a + d) + e b b b b

b b b b (a + f ) + g (a + f ) − g a − f a − f

b b b b (a + f ) − g (a + f) + g a − f a − f

b b b b a − f a − f (a + f ) + h (a + f ) − h

b b b b a − f a − f (a + f ) − h (a + f) + h

=

s t q q b b b b

t s q q b b b b

q q

s+t2

+ e

s+t2

− e b b b b q q

s+t2

− e

s+t2

+ e b b b b

b b b b

b b b b

b b b b

b b b b

 ,

a = 1

8 √

2 (z 1 + z 2 + z 3 + z 4 ), b = 1

8 √

2 (z 5 + z 6 + z 7 + z 8 ), c = 21

2 (z 1 − z 2 ), d = 1 8 (z 1 + z 2 − z 3 − z 4 ), e = 21

2 (z 3 − z 4 ),

f = 1 8 (z 5 + z 6 − z 7 − z 8 ), g = 2 1 2 (z 5 − z 6 ), h = 2 1 2 (z 7 − z 8 ),

(a + d) + c = s, (a + d) − c = t, a − d = q, a + d = s+t 2 ,

2a − c = q + t, 2a + c = q + s, a = 1 ( t+s + q).

(12)

Appendix 2 (A different position of the columns in Q)

Q 2 D 2 =

 1 −1

1 1

 " 1

√ 2

√ 1 2

# ,

Q 4 D 4 =

1 −1 −1

1 1 −1

1 1 −1

1 1 1

√ 1 4 √ 1

2 √ 1 4 √ 1

2

 ,

Q 8 D 8 =

1 −1 −1 −1

1 1 −1 −1

1 1 −1 −1

1 1 1 −1

1 1 −1 −1

1 1 1 −1

1 1 1 −1

1 1 1 1

√ 1

8 1

√ 2

√ 1

4 1

√ 2

√ 1

8 1

√ 2 1

√ 4

√ 1 2

 ,

Q

16

D

16

=

1 −1 −1 −1 −1

1 1 −1 −1 −1

1 1 −1 −1 −1

1 1 1 −1 −1

1 1 −1 −1 −1

1 1 1 −1 −1

1 1 1 −1 −1

1 1 1 1 −1

1 1 −1 −1 −1

1 1 1 −1 −1

1 1 1 −1 −1

1 1 1 1 −1

1 1 1 −1 −1

1 1 1 1 −1

1 1 1 1 −1

1 1 1 1 1

·D

16

,

D 16 =

 D 8 S 8

D 8 S 8



, S 8 = diag ( 1

√ 2 , 1, 1, 1, 1, 1, 1, 1).

Note that

Q n D n =

 Q

n

2

−ee T 1

ee T

1 Q

n

2

 D

n

2

S

n

2

D

n

2

S

n

2

 .

Riferimenti

Documenti correlati

Moreover, take into account that even a very little perturbation in one entry of a triangular matrix can change the value of its rank (see the following example).. The SVD of R

Preconditioned finite element method: the Poisson problem on the square Consider the Poisson problem on Ω = [0, 1] × [0, 1]... Now let us compute the eigenvalues of A (we already

E’ come per il triedro di Cauchy che mi aiutava a determinare il tensore delle tensioni applicandolo appunto ad una figura geometrica ideale, ma in realtà serviva a

[r]

[r]

[r]

[r]

[r]