• Non ci sono risultati.

(1)Problem 11724 (American Mathematical Monthly, Vol.120, August-September 2013]) Proposed by Andrew Cusumano (USA)

N/A
N/A
Protected

Academic year: 2021

Condividi "(1)Problem 11724 (American Mathematical Monthly, Vol.120, August-September 2013]) Proposed by Andrew Cusumano (USA)"

Copied!
1
0
0

Testo completo

(1)

Problem 11724

(American Mathematical Monthly, Vol.120, August-September 2013]) Proposed by Andrew Cusumano (USA).

Let f (n) =Pn

k=1kk and let g(n) =Pn

k=1f (k). Find

n→∞lim

 g(n + 2)

g(n + 1) −g(n + 1) g(n)

 .

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

We will show that

n→∞lim

 g(n + 2)

g(n + 1)−g(n + 1) g(n)



= e.

Since g(n) =Pn

k=1(n + 1 − k)kk =Pn

k=1k(n + 1 − k)n+1−k, it follows that g(n)

nn =

n

X

k=1

k nk−1



1 −k − 1 n

n+1−k

= 1 + 2 n

 1 − 1

n

n−1

+ h(n) = 1 + 2e−1

n + o 1 n

 .

because

0 ≤ h(n) =

n

X

k=3

k nk−1



1 − k − 1 n

n+1−k

≤ 3 n2+ 4

n3 + 1 n4

n

X

k=5

k ≤ 3 n2 + 4

n3 +n2+ n 2n4 .

Hence

g(n + 1) nn+1 =

 1 + 1

n

n+1

· g(n + 1) (n + 1)n+1 = e

 1 + 1

2n + o 1 n

 

1 + 2e−1

n + o 1 n



= e +e + 4 2n + o 1

n



and

g(n + 2) nn+2 =

 1 + 2

n

n+2

· g(n + 2) (n + 2)n+2 = e2

 1 + 2

n+ o 1 n

 

1 +2e−1

n + o 1 n



= e2+2e2+ 2e

n + o 1 n

 .

Finally g(n + 2)

g(n + 1)−g(n + 1)

g(n) = g(n + 2)g(n) − g(n + 1)2 g(n + 1)g(n)

=n

e + o(1)

"

e2+2e2+ 2e

n + o 1 n

 

1 +2e−1

n + o 1 n





e +e + 4 2n + o 1

n

2#

=n

e + o(1) e2

n + o 1 n



= e + o 1 n



→ e.



Riferimenti