• Non ci sono risultati.

Satta et al., “Monocyte vesiculation is a possible mechanism for dissemination of membrane-associated procoagulant activities and adhesion molecules after stimulation by lipopolysaccharide

N/A
N/A
Protected

Academic year: 2021

Condividi "Satta et al., “Monocyte vesiculation is a possible mechanism for dissemination of membrane-associated procoagulant activities and adhesion molecules after stimulation by lipopolysaccharide"

Copied!
10
0
0

Testo completo

(1)

1

Bibliography

[1] B. Hugel, M. C. Martínez, C. Kunzelmann, and J.-M. Freyssinet, “Membrane microparticles: two sides of the coin.,” Physiology (Bethesda, Md.), vol. 20, pp.

22-7, Feb. 2005.

[2] N. Satta et al., “Monocyte vesiculation is a possible mechanism for dissemination of membrane-associated procoagulant activities and adhesion molecules after stimulation by lipopolysaccharide.,” Journal of immunology (Baltimore, Md. : 1950), vol. 153, no. 7, pp. 3245-55, Oct. 1994.

[3] A. Celi, R. Lorenzet, B. C. Furie, and B. Furie, “Microparticles and a P-selectin- mediated pathway of blood coagulation.,” Disease markers, vol. 20, no. 6, pp.

347-52, Jan. 2004.

[4] J. G. Kelton, T. E. Warkentin, C. P. Hayward, W. G. Murphy, and J. C. Moore,

“Calpain activity in patients with thrombotic thrombocytopenic purpura is associated with platelet microparticles.,” Blood, vol. 80, no. 9, pp. 2246-51, Nov. 1992.

[5] M. J. VanWijk, E. VanBavel, a Sturk, and R. Nieuwland, “Microparticles in cardiovascular diseases.,” Cardiovascular research, vol. 59, no. 2, pp. 277-87, Aug. 2003.

[6] M. C. Martínez, A. Tesse, F. Zobairi, and R. Andriantsitohaina, “Shed membrane microparticles from circulating and vascular cells in regulating vascular function.,” American journal of physiology. Heart and circulatory physiology, vol. 288, no. 3, pp. H1004-9, Mar. 2005.

[7] T. Benameur, R. Andriantsitohaina, and M. C. Martínez, “Therapeutic potential of plasma membrane-derived microparticles.,” Pharmacological reports : PR, vol. 61, no. 1, pp. 49-57, 2009.

[8] K. D. Patel, G. A. Zimmerman, S. M. Prescott, and T. M. McIntyre, “Novel leukocyte agonists are released by endothelial cells exposed to peroxide.,” The Journal of biological chemistry, vol. 267, no. 21, pp. 15168-75, Jul. 1992.

[9] V. Combes et al., “In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant.,” The Journal of clinical investigation, vol. 104, no. 1, pp. 93-102, Jul. 1999.

(2)

2

[10] J. F. Leeuwenberg, T. M. Jeunhomme, and W. A. Buurman, “Role of ELAM-1 in adhesion of monocytes to activated human endothelial cells.,” Scandinavian journal of immunology, vol. 35, no. 3, pp. 335-41, Mar. 1992.

[11] A. D. Schecter et al., “Release of active tissue factor by human arterial smooth muscle cells.,” Circulation research, vol. 87, no. 2, pp. 126-32, Jul. 2000.

[12] G. E. Gilbert, P. J. Sims, T. Wiedmer, B. Furie, B. C. Furie, and S. J. Shattil,

“Platelet-derived microparticles express high affinity receptors for factor VIII.,”

The Journal of biological chemistry, vol. 266, no. 26, pp. 17261-8, Sep. 1991.

[13] C. H. Gemmell, M. V. Sefton, and E. L. Yeo, “Platelet-derived microparticle formation involves glycoprotein IIb-IIIa. Inhibition by RGDS and a Glanzmann’s thrombasthenia defect.,” The Journal of biological chemistry, vol. 268, no. 20, pp. 14586-9, Jul. 1993.

[14] Y. Miyazaki et al., “High shear stress can initiate both platelet aggregation and shedding of procoagulant containing microparticles.,” Blood, vol. 88, no. 9, pp.

3456-64, Nov. 1996.

[15] H. Miyoshi et al., “Calpain activation in plasma membrane bleb formation during tert-butyl hydroperoxide-induced rat hepatocyte injury.,”

Gastroenterology, vol. 110, no. 6, pp. 1897-904, Jun. 1996.

[16] H. Ariyoshi and E. W. Salzman, “Association of localized Ca2+ gradients with redistribution of glycoprotein IIb-IIIa and F-actin in activated human blood platelets.,” Arteriosclerosis, thrombosis, and vascular biology, vol. 16, no. 2, pp. 230-5, Feb. 1996.

[17] J. H. W. Distler, L. C. Huber, S. Gay, O. Distler, and D. S. Pisetsky,

“Microparticles as mediators of cellular cross-talk in inflammatory disease.,”

Autoimmunity, vol. 39, no. 8, pp. 683-90, Dec. 2006.

[18] C. Sapet et al., “Thrombin-induced endothelial microparticle generation:

identification of a novel pathway involving ROCK-II activation by caspase-2.,”

Blood, vol. 108, no. 6, pp. 1868-76, Sep. 2006.

[19] M. Sebbagh, C. Renvoizé, J. Hamelin, N. Riché, J. Bertoglio, and J. Bréard,

“Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing.,” Nature cell biology, vol. 3, no. 4, pp. 346-52, Apr. 2001.

[20] M. Maekawa et al., “Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase.,” Science (New York, N.Y.), vol. 285, no.

5429, pp. 895-8, Aug. 1999.

(3)

3

[21] J. Huber et al., “Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte- endothelial interactions.,” Arteriosclerosis, thrombosis, and vascular biology, vol. 22, no. 1, pp. 101-7, Jan. 2002.

[22] N. Blanchard et al., “TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex.,” Journal of immunology (Baltimore, Md. : 1950), vol. 168, no. 7, pp. 3235-41, Apr. 2002.

[23] K. Aupeix et al., “The significance of shed membrane particles during programmed cell death in vitro, and in vivo, in HIV-1 infection.,” The Journal of clinical investigation, vol. 99, no. 7, pp. 1546-54, Apr. 1997.

[24] J. M. Stein and J. P. Luzio, “Ectocytosis caused by sublytic autologous complement attack on human neutrophils. The sorting of endogenous plasma- membrane proteins and lipids into shed vesicles.,” The Biochemical journal, vol. 274 ( Pt 2, pp. 381-6, Mar. 1991.

[25] D. Pilzer, O. Gasser, O. Moskovich, J. A. Schifferli, and Z. Fishelson, “Emission of membrane vesicles: roles in complement resistance, immunity and cancer.,”

Springer seminars in immunopathology, vol. 27, no. 3, pp. 375-87, Nov. 2005.

[26] E. Perret, A. Lakkaraju, S. Deborde, R. Schreiner, and E. Rodriguez-Boulan,

“Evolving endosomes: how many varieties and why?,” Current opinion in cell biology, vol. 17, no. 4, pp. 423-34, Aug. 2005.

[27] S. P. Ardoin, J. C. Shanahan, and D. S. Pisetsky, “The role of microparticles in inflammation and thrombosis.,” Scandinavian journal of immunology, vol. 66, no. 2-3, pp. 159-65.

[28] B. Fritzsching, B. Schwer, J. Kartenbeck, A. Pedal, V. Horejsi, and M. Ott,

“Release and intercellular transfer of cell surface CD81 via microparticles.,”

Journal of immunology (Baltimore, Md. : 1950), vol. 169, no. 10, pp. 5531-7, Nov. 2002.

[29] M. Mack et al., “Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection.,” Nature medicine, vol. 6, no. 7, pp. 769- 75, Jul. 2000.

[30] O. P. Barry, M. G. Kazanietz, D. Praticò, and G. A. FitzGerald, “Arachidonic acid in platelet microparticles up-regulates cyclooxygenase-2-dependent prostaglandin formation via a protein kinase C/mitogen-activated protein kinase-dependent pathway.,” The Journal of biological chemistry, vol. 274, no.

11, pp. 7545-56, Mar. 1999.

(4)

4

[31] O. P. Barry, D. Praticò, R. C. Savani, and G. A. FitzGerald, “Modulation of monocyte-endothelial cell interactions by platelet microparticles.,” The Journal of clinical investigation, vol. 102, no. 1, pp. 136-44, Jul. 1998.

[32] S. B. Forlow, R. P. McEver, and M. U. Nollert, “Leukocyte-leukocyte interactions mediated by platelet microparticles under flow.,” Blood, vol. 95, no. 4, pp. 1317-23, Feb. 2000.

[33] A. J. Nauta et al., “Direct binding of C1q to apoptotic cells and cell blebs induces complement activation.,” European journal of immunology, vol. 32, no. 6, pp. 1726-36, Jun. 2002.

[34] S. Kanazawa, S. Nomura, M. Kuwana, M. Muramatsu, K. Yamaguchi, and S.

Fukuhara, “Monocyte-derived microparticles may be a sign of vascular complication in patients with lung cancer.,” Lung cancer (Amsterdam, Netherlands), vol. 39, no. 2, pp. 145-9, Feb. 2003.

[35] K. Shedden, X. T. Xie, P. Chandaroy, Y. T. Chang, and G. R. Rosania, “Expulsion of small molecules in vesicles shed by cancer cells: association with gene expression and chemosensitivity profiles.,” Cancer research, vol. 63, no. 15, pp. 4331-7, Aug. 2003.

[36] M. C. Martínez et al., “Shed membrane microparticles from circulating and vascular cells in regulating vascular function Shed membrane microparticles from circulating and vascular cells in regulating vascular function,” Symposium A Quarterly Journal In Modern Foreign Literatures, 2012.

[37] O. P. Barry, D. Pratico, J. A. Lawson, and G. A. FitzGerald, “Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles.,” The Journal of clinical investigation, vol. 99, no. 9, pp. 2118- 27, May 1997.

[38] S. V. Brodsky, F. Zhang, A. Nasjletti, and M. S. Goligorsky, “Endothelium- derived microparticles impair endothelial function in vitro.,” American journal of physiology. Heart and circulatory physiology, vol. 286, no. 5, pp. H1910-5, May 2004.

[39] A.-C. Brisset et al., “Shedding of active tissue factor by aortic smooth muscle cells (SMCs) undergoing apoptosis.,” Thrombosis and haemostasis, vol. 90, no.

3, pp. 511-8, Sep. 2003.

[40] A. MacKenzie, H. L. Wilson, E. Kiss-Toth, S. K. Dower, R. A. North, and A.

Surprenant, “Rapid secretion of interleukin-1beta by microvesicle shedding.,”

Immunity, vol. 15, no. 5, pp. 825-35, Nov. 2001.

(5)

5

[41] M. Mesri and D. C. Altieri, “Endothelial cell activation by leukocyte microparticles.,” Journal of immunology (Baltimore, Md. : 1950), vol. 161, no.

8, pp. 4382-7, Oct. 1998.

[42] S. Martin et al., “Shed membrane particles from T lymphocytes impair endothelial function and regulate endothelial protein expression.,” Circulation, vol. 109, no. 13, pp. 1653-9, Apr. 2004.

[43] H. K. Kim, K. S. Song, J.-H. Chung, K. R. Lee, and S.-N. Lee, “Platelet microparticles induce angiogenesis in vitro.,” British journal of haematology, vol. 124, no. 3, pp. 376-84, Feb. 2004.

[44] G. Taraboletti, S. D’Ascenzo, P. Borsotti, R. Giavazzi, A. Pavan, and V. Dolo,

“Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells.,” The American journal of pathology, vol. 160, no. 2, pp. 673-80, Feb. 2002.

[45] F. D. George, “Microparticles in vascular diseases.,” Thrombosis research, vol.

122, pp. S55-9, Jan. 2008.

[46] B. Furie and B. C. Furie, “The molecular basis of blood coagulation.,” Cell, vol.

53, no. 4, pp. 505-18, May 1988.

[47] T. A. Drake, J. H. Morrissey, and T. S. Edgington, “Selective cellular expression of tissue factor in human tissues. Implications for disorders of hemostasis and thrombosis.,” The American journal of pathology, vol. 134, no. 5, pp. 1087-97, May 1989.

[48] L. L. Horstman, W. Jy, J. J. Jimenez, and Y. S. Ahn, “Endothelial microparticles as markers of endothelial dysfunction.,” Frontiers in bioscience : a journal and virtual library, vol. 9, pp. 1118-35, May 2004.

[49] W. Jy et al., “Endothelial microparticles induce formation of platelet aggregates via a von Willebrand factor/ristocetin dependent pathway, rendering them resistant to dissociation.,” Journal of thrombosis and haemostasis : JTH, vol. 3, no. 6, pp. 1301-8, Jun. 2005.

[50] P. L. Giesen et al., “Blood-borne tissue factor: another view of thrombosis.,”

Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 5, pp. 2311-5, Mar. 1999.

[51] O. Morel et al., “Procoagulant microparticles: disrupting the vascular homeostasis equation?,” Arteriosclerosis, thrombosis, and vascular biology, vol. 26, no. 12, pp. 2594-604, Dec. 2006.

(6)

6

[52] S. Chelland Campbell, R. J. Moffatt, and B. A. Stamford, “Smoking and smoking cessation -- the relationship between cardiovascular disease and lipoprotein metabolism: a review.,” Atherosclerosis, vol. 201, no. 2, pp. 225-35, Dec. 2008.

[53] M. Götting, J. Ph Addicks, M. Spallek, A. M. Jensen, and D. A. Groneberg,

“[Exposure to smoke and its effects on pulmonary diseases].,”

Versicherungsmedizin / herausgegeben von Verband der Lebensversicherungs- Unternehmen e.V. und Verband der Privaten Krankenversicherung e.V, vol. 63, no. 1, pp. 11-6, Mar. 2011.

[54] W. MacNee, “Pulmonary and systemic oxidant/antioxidant imbalance in chronic obstructive pulmonary disease.,” Proceedings of the American Thoracic Society, vol. 2, no. 1, pp. 50-60, Jan. 2005.

[55] N. Moretto, F. Facchinetti, T. Southworth, M. Civelli, D. Singh, and R.

Patacchini, “alpha,beta-Unsaturated aldehydes contained in cigarette smoke elicit IL-8 release in pulmonary cells through mitogen-activated protein kinases.,” American journal of physiology. Lung cellular and molecular physiology, vol. 296, no. 5, pp. L839-48, May 2009.

[56] P. K. MacCallum, “Markers of hemostasis and systemic inflammation in heart disease and atherosclerosis in smokers.,” Proceedings of the American Thoracic Society, vol. 2, no. 1, pp. 34-43, Jan. 2005.

[57] S. Matetzky et al., “Smoking increases tissue factor expression in atherosclerotic plaques: implications for plaque thrombogenicity.,”

Circulation, vol. 102, no. 6, pp. 602-4, Aug. 2000.

[58] A. Sambola et al., “Role of risk factors in the modulation of tissue factor activity and blood thrombogenicity.,” Circulation, vol. 107, no. 7, pp. 973-7, Feb. 2003.

[59] C. Heiss et al., “Brief secondhand smoke exposure depresses endothelial progenitor cells activity and endothelial function: sustained vascular injury and blunted nitric oxide production.,” Journal of the American College of Cardiology, vol. 51, no. 18, pp. 1760-71, May 2008.

[60] C. Gordon et al., “Circulating Endothelial Microparticles as a Measure of Early Lung Destruction in Cigarette Smokers.,” American journal of respiratory and critical care medicine, vol. 184, no. 2, pp. 224-32, Mar. 2011.

[61] M. Li, D. Yu, K. J. Williams, and M.-L. Liu, “Tobacco smoke induces the generation of procoagulant microvesicles from human monocytes/macrophages.,” Arteriosclerosis, thrombosis, and vascular biology, vol. 30, no. 9, pp. 1818-24, Sep. 2010.

(7)

7

[62] A. Celi, S. Cianchetti, S. Petruzzelli, S. Carnevali, F. Baliva, and C. Giuntini,

“ICAM-1-independent adhesion of neutrophils to phorbol ester-stimulated human airway epithelial cells.,” The American journal of physiology, vol. 277, no. 3 Pt 1, pp. L465-71, Sep. 1999.

[63] C. Cerri, D. Chimenti, I. Conti, T. Neri, P. Paggiaro, and A. Celi,

“Monocyte/macrophage-derived microparticles up-regulate inflammatory mediator synthesis by human airway epithelial cells.,” Journal of immunology (Baltimore, Md. : 1950), vol. 177, no. 3, pp. 1975-80, Aug. 2006.

[64] S. Carnevali et al., “Cigarette smoke extract induces oxidative stress and apoptosis in human lung fibroblasts.,” American journal of physiology. Lung cellular and molecular physiology, vol. 284, no. 6, pp. L955-63, Jun. 2003.

[65] A. Celi et al., “P-selectin induces the expression of tissue factor on monocytes.,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 19, pp. 8767-71, Sep. 1994.

[66] J. A. Bastarache, R. D. Fremont, J. A. Kropski, F. R. Bossert, and L. B. Ware,

“Procoagulant alveolar microparticles in the lungs of patients with acute respiratory distress syndrome.,” American journal of physiology. Lung cellular and molecular physiology, vol. 297, no. 6, pp. L1035-41, Dec. 2009.

[67] M. Bernimoulin et al., “Differential stimulation of monocytic cells results in distinct populations of microparticles.,” Journal of thrombosis and haemostasis : JTH, vol. 7, no. 6, pp. 1019-28, Jun. 2009.

[68] I. Hrachovinová et al., “Interaction of P-selectin and PSGL-1 generates microparticles that correct hemostasis in a mouse model of hemophilia A.,”

Nature medicine, vol. 9, no. 8, pp. 1020-5, Aug. 2003.

[69] M. G. Cosio, M. Saetta, and A. Agusti, “Immunologic aspects of chronic obstructive pulmonary disease.,” The New England journal of medicine, vol.

360, no. 23, pp. 2445-54, Jun. 2009.

[70] A. Pesci et al., “Inflammatory cells and mediators in bronchial lavage of patients with chronic obstructive pulmonary disease.,” The European respiratory journal : official journal of the European Society for Clinical Respiratory Physiology, vol. 12, no. 2, pp. 380-6, Aug. 1998.

[71] S. L. Traves, S. V. Culpitt, R. E. K. Russell, P. J. Barnes, and L. E. Donnelly,

“Increased levels of the chemokines GROalpha and MCP-1 in sputum samples from patients with COPD.,” Thorax, vol. 57, no. 7, pp. 590-5, Jul. 2002.

[72] M. H. Alderman, S. Madhavan, W. L. Ooi, H. Cohen, J. E. Sealey, and J. H.

Laragh, “Association of the renin-sodium profile with the risk of myocardial

(8)

8

infarction in patients with hypertension.,” The New England journal of medicine, vol. 324, no. 16, pp. 1098-104, Apr. 1991.

[73] S. Yusuf, P. Sleight, J. Pogue, J. Bosch, R. Davies, and G. Dagenais, “Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators.,” The New England journal of medicine, vol. 342, no. 3, pp. 145- 53, Jan. 2000.

[74] M. P. Kim, M. Zhou, and L. M. Wahl, “Angiotensin II increases human monocyte matrix metalloproteinase-1 through the AT2 receptor and prostaglandin E2: implications for atherosclerotic plaque rupture.,” Journal of leukocyte biology, vol. 78, no. 1, pp. 195-201, Jul. 2005.

[75] A. Celi, A. Del Fiorentino, S. Cianchetti, and R. Pedrinelli, “Tissue factor modulation by Angiotensin II: a clue to a better understanding of the cardiovascular effects of renin-angiotensin system blockade?,” Endocrine, metabolic & immune disorders drug targets, vol. 8, no. 4, pp. 308-13, Dec.

2008.

[76] D. T. Dinh, A. G. Frauman, C. I. Johnston, and M. E. Fabiani, “Angiotensin receptors: distribution, signalling and function.,” Clinical science (London, England : 1979), vol. 100, no. 5, pp. 481-92, May 2001.

[77] D. J. Campbell, “Circulating and tissue angiotensin systems.,” The Journal of clinical investigation, vol. 79, no. 1, pp. 1-6, Jan. 1987.

[78] C. I. Johnston, “Franz Volhard Lecture. Renin-angiotensin system: a dual tissue and hormonal system for cardiovascular control.,” Journal of hypertension.

Supplement : official journal of the International Society of Hypertension, vol.

10, no. 7, pp. S13-26, Dec. 1992.

[79] M. Horiuchi, M. Akishita, and V. J. Dzau, “Recent progress in angiotensin II type 2 receptor research in the cardiovascular system.,” Hypertension, vol. 33, no.

2, pp. 613-21, Feb. 1999.

[80] F. Rompe, T. Unger, and U. M. Steckelings, “The angiotensin AT2 receptor in inflammation.,” Drug news & perspectives, vol. 23, no. 2, pp. 104-11, Mar.

2010.

[81] S. Verma and M. Strauss, “Angiotensin receptor blockers and myocardial infarction.,” BMJ (Clinical research ed.), vol. 329, no. 7477, pp. 1248-9, Nov.

2004.

[82] M. H. Strauss and A. S. Hall, “Angiotensin receptor blockers may increase risk of myocardial infarction: unraveling the ARB-MI paradox.,” Circulation, vol.

114, no. 8, pp. 838-54, Aug. 2006.

(9)

9

[83] B. I. Levy, “How to explain the differences between renin angiotensin system modulators.,” American journal of hypertension, vol. 18, no. 9 Pt 2, p. 134S- 141S, Sep. 2005.

[84] T. L. Reudelhuber, “The continuing saga of the AT2 receptor: a case of the good, the bad, and the innocuous.,” Hypertension, vol. 46, no. 6, pp. 1261-2, Dec. 2005.

[85] B. I. Lévy, “Can angiotensin II type 2 receptors have deleterious effects in cardiovascular disease? Implications for therapeutic blockade of the renin- angiotensin system.,” Circulation, vol. 109, no. 1, pp. 8-13, Jan. 2004.

[86] R. E. Widdop, E. S. Jones, R. E. Hannan, and T. A. Gaspari, “Angiotensin AT2 receptors: cardiovascular hope or hype?,” British journal of pharmacology, vol.

140, no. 5, pp. 809-24, Nov. 2003.

[87] H. Matsubara, “Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal diseases.,” Circulation research, vol. 83, no. 12, pp.

1182-91.

[88] T. Senbonmatsu et al., “A novel angiotensin II type 2 receptor signaling pathway: possible role in cardiac hypertrophy.,” The EMBO journal, vol. 22, no.

24, pp. 6471-82, Dec. 2003.

[89] S. Nomura, A. Shouzu, S. Omoto, M. Nishikawa, and T. Iwasaka, “Effects of losartan and simvastatin on monocyte-derived microparticles in hypertensive patients with and without type 2 diabetes mellitus.,” Clinical and applied thrombosis/hemostasis : official journal of the International Academy of Clinical and Applied Thrombosis/Hemostasis, vol. 10, no. 2, pp. 133-41, Apr.

2004.

[90] C. M. Boulanger, “Microparticles, vascular function and hypertension.,”

Current opinion in nephrology and hypertension, vol. 19, no. 2, pp. 177-80, Mar. 2010.

[91] N. J. Brown and D. E. Vaughan, “Prothrombotic effects of angiotensin.,”

Advances in internal medicine, vol. 45, pp. 419-29, Jan. 2000.

[92] E. R. Olson, P. E. Shamhart, J. E. Naugle, and J. G. Meszaros, “Angiotensin II- induced extracellular signal-regulated kinase 1/2 activation is mediated by protein kinase Cdelta and intracellular calcium in adult rat cardiac fibroblasts.,” Hypertension, vol. 51, no. 3, pp. 704-11, Mar. 2008.

[93] S. Greco, M. G. Elia, A. Muscella, C. Storelli, and S. Marsigliante, “AT1 angiotensin II receptor mediates intracellular calcium mobilization in normal and cancerous breast cells in primary culture.,” Cell calcium, vol. 32, no. 1, pp.

1-10, Jul. 2002.

(10)

10

[94] P. Lijnen, R. Fagard, and V. Petrov, “Cytosolic calcium changes induced by angiotensin II in human peripheral blood mononuclear cells are mediated via angiotensin II subtype 1 receptors.,” Journal of hypertension, vol. 15, no. 8, pp.

871-6, Aug. 1997.

[95] D. Burger, A. C. Montezano, N. Nishigaki, Y. He, A. Carter, and R. M. Touyz,

“Endothelial microparticle formation by angiotensin II is mediated via Ang II receptor type I/NADPH oxidase/ Rho kinase pathways targeted to lipid rafts.,”

Arteriosclerosis, thrombosis, and vascular biology, vol. 31, no. 8, pp. 1898-907, Aug. 2011.

[96] H. Johansson et al., “Tissue factor produced by the endocrine cells of the islets of Langerhans is associated with a negative outcome of clinical islet transplantation.,” Diabetes, vol. 54, no. 6, pp. 1755-62, Jun. 2005.

[97] A. M. Shapiro et al., “Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen.,”

The New England journal of medicine, vol. 343, no. 4, pp. 230-8, Jul. 2000.

[98] L. Moberg et al., “Production of tissue factor by pancreatic islet cells as a trigger of detrimental thrombotic reactions in clinical islet transplantation.,”

Lancet, vol. 360, no. 9350, pp. 2039-45.

[99] W. Bennet et al., “Incompatibility between human blood and isolated islets of Langerhans: a finding with implications for clinical intraportal islet transplantation?,” Diabetes, vol. 48, no. 10, pp. 1907-14, Oct. 1999.

[100] B. Krüger et al., “Islet-expressed TLR2 and TLR4 sense injury and mediate early graft failure after transplantation.,” European journal of immunology, vol. 40, no. 10, pp. 2914-24, Oct. 2010.

Riferimenti

Documenti correlati

Poplar woodchip storage in small and medium piles with different forms, densities and volumes..

In this thesis we presented the numerical implementation of a framework that unifies Dark Energy and Modified Gravity models, the Effective Field The- ory of Cosmic Acceleration,

est historien de l’art (UCL) avec un Master in Conservation of Historic Towns & Buildings (KUL) et un DES en Sauvegarde du Patrimoine bâti moderne en contemporain

Non solo gli studenti dovrebbero leggere di matematica, per non pensare che i libri di matematica sono solo i libri di testo; tanto che si possono confondere

Ritrovatasi improvvisamente a gestire il potere dopo la morte del marito Gian Galeazzo Visconti, la prima duchessa di Milano ha avuto un ruolo centrale nei primi anni del governo

Tutti questi sono infatti disoccupati e senza mezzi finanziari (…) Chi è il capo amministrativo e politico della provincia deve rendersi conto della situazione e prendere

Herein, we investigated HIF-1a, VEGF and JunB expression in OC ES-2 and SKOV-3 cells treated by PDMSCs conditioned medium (CM) in order to verify our hypothesis that

Adopting the life cycle assessment (LCA) could be useful to compare the environmental impacts due to the materials and systems production and the building construction and