• Non ci sono risultati.

CAPITOLO 2CAPITOLO 2CAPITOLO 2CAPITOLO 2 DescrizioneDescrizioneDescrizioneDescrizione e Modellazione Corpo P e Modellazione Corpo P e Modellazione Corpo P e Modellazione Corpo Pompaompaompaompa

N/A
N/A
Protected

Academic year: 2021

Condividi "CAPITOLO 2CAPITOLO 2CAPITOLO 2CAPITOLO 2 DescrizioneDescrizioneDescrizioneDescrizione e Modellazione Corpo P e Modellazione Corpo P e Modellazione Corpo P e Modellazione Corpo Pompaompaompaompa"

Copied!
80
0
0

Testo completo

(1)

CAPITOLO 2

CAPITOLO 2

CAPITOLO 2

CAPITOLO 2

Descrizione

Descrizione

Descrizione

Descrizione e Modellazione Corpo P

e Modellazione Corpo P

e Modellazione Corpo P

e Modellazione Corpo Pompa

ompa

ompa

ompa

2.1 Corpo Pompa

2.1 Corpo Pompa

2.1 Corpo Pompa

2.1 Corpo Pompa

L’azienda Leader Pumps Group S.p.A è specializzata nella produzione di pompe elettriche per il sollevamento dell’acqua. In particolare si tratta di pompe ad uso prevalentemente “domestico” (potenze fino ai 1500 watt), ovvero destinate all’utilizzo nelle abitazioni civili, giardini, imbarcazioni, giardinaggio e irrigazione. Oltre alle pompe per l’approvvigionamento idrico in applicazioni domestiche e da giardino sono prodotte anche pompe sommergibili multiuso per drenaggio, svuotamento, travaso e piccola irrigazione. Le versioni automatiche con galleggiante permettono la prevenzione d’allagamenti. Vi è per esempio in produzione una pompa sommergibile disegnata appositamente per pozzetti di scarico di dimensioni ridotte (minimo 20 cm x 20 cm). In generale queste pompe sono adatte a pompare acque pulite, ma ci sono anche dei modelli adatti a pompare acque sporche contenenti particelle solide di diametro massimo di 38 mm.

Nella realizzazione di pompe, ma in generale d’oggetti e macchine che lavorano a contatto con acqua, è di fondamentale importanza il problema della corrosione

(2)

motivo la Leader Pumps Group S.p.A. ha scelto come materiali di progettazione per le parti suscettibili a corrosione, le plastiche e gli acciai inox. Il processo utilizzato per la realizzazione degli elementi in plastica è lo stampaggio ad

iniezione.

Per quanto riguarda le plastiche utilizzate, sono di diverse tipologie a seconda che vanno a realizzare elementi strutturali soggetti a pressione oppure elementi a carattere estetico-funzionale come per esempio le carenature esterne.

Nella presente trattazione gli studi e le rilevazioni sono eseguite su un elemento “corpo pompa”. Con questo nome s’intende il corpo all’interno del quale ruota la girante (oppure le giranti) che mettono in pressione il fluido e ne determinano poi le prestazioni (prevalenza, portata, ecc). Tale corpo è assemblato ermeticamente con una parte fissa costituente il basamento stesso della pompa (flangia supporto). A tale parte fissa, dal lato opposto al corpo pompa, è montata la parte elettrica: motore elettrico (e relativa componentistica elettronica) il quale con il suo albero mette in rotazione le giranti. La girante (o rotore) è vincolato a ruotare intorno all’asse della macchina e presenta perifericamente i canali mobili percorsi dal fluido. Vi è poi il diffusore (o statore) vincolato al corpo pompa, nel quale sono ricavati i canali fissi d’ingresso e d’uscita del fluido dalla girante; il diffusore racchiude la girante e sostiene i supporti dell’albero.

Nella figura sotto possiamo vedere la sezione di una pompa con indicati gli elementi funzionali principali che la compongono. L’elemento indicato “tubo di Venturi” è accoppiato al corpo pompa ed ha la funzione di creare una depressione

(3)

al foro d’ingresso della pompa per poter adescare autonomamente il liquido da trattare. Questo è possibile sfruttando la depressione che si ha nel restringimento della sezione nei tubi percorsi da un fluido (effetto Venturi).

Fig. 2.1-Il tubo di Venturi è un tubo con un restringimento: a questo livello l'aria

accelera e la pressione statica che essa esercita sulle pareti è quindi minore rispetto al resto del tubo

(4)

Fig. 2.3-Immagini di pompe: sopra un

modello con corpo pompa realizzato in acciaio inox. A fianco un esempio di pompa sommergibile multiuso dotata d’interruttore a galleggiante per l’avvio e l’arresto

automatico.

Fig. 2.4-Modello di pompa con il corpo e relativa flangia supporto realizzati in

materiale plastico. In particolare il corpo pompa è quello della successiva trattazione analitica.

(5)

Il corpo pompa come caratteristica generale ha quella d’essere soggetto alla pressione massima d’esercizio della pompa che è poi quella misurabile sul foro di mandata. Secondo quest’osservazione è necessario garantire la giusta resistenza strutturale con opportuni coefficienti di sicurezza onde evitare, in qualsiasi condizione di funzionamento, lo scoppio accidentale. Non vi sono invece particolari restrizioni sulle deformazioni sotto carico se non quelle relative alle tenute fra gli elementi accoppiati tramite guarnizioni O-Ring.

Sempre in una descrizione generalizzata, il corpo pompa è caratterizzato da un foro di aspirazione (ingresso) e uno di mandata (uscita) del liquido e da fori più piccoli di riempimento e di scarico. Nella figura sotto sono evidenziate le caratteristiche principali del corpo pompa oggetto della successiva trattazione analitica.

(6)

I fori risultano essere tutti filettati con filettatura conica americana (NPT). I fori di riempimento e di scarico sono tappati con appositi tappi dotati di guarnizione di tipo O-Ring. I fori d’aspirazione e di mandata sono invece collegati alle tubazioni dell’impianto idraulico di cui la pompa fa parte. Le ribs grandi indicate in figura sono presenti per poter realizzare velocemente altri due fori nel caso di un utilizzo particolare del corpo pompa.

Il foro di riempimento serve nelle fasi iniziali d’installazione della pompa per ridurre o evitare i problemi d’adescamento, mentre il foro di scarico serve per vuotare la pompa nel caso di inutilizzo prolungato e di smontaggio da una posizione d’utilizzo.

(7)

Fig. 2.7-Corpo pompa diviso a metà. In rosso sono evidenziate le filettature.

2.2 Modellazione Corpo Pompa e Introduzione a

2.2 Modellazione Corpo Pompa e Introduzione a

2.2 Modellazione Corpo Pompa e Introduzione a

2.2 Modellazione Corpo Pompa e Introduzione a

Pro/MECHANICA

Pro/MECHANICA

Pro/MECHANICA

Pro/MECHANICA

™™™™

Le immagini precedenti (dalla 2.4 alla 2.6) sono frutto della modellazione del corpo pompa con il programma Pro/ENGINEER® (realizzato dalla statunitense Parametric Tecnology Corporation PTC).

Pro/ENGINEER è un MODELLATORE DI SOLIDI che consente di sviluppare i modelli come solidi e di lavorare in un ambiente tridimensionale.

(8)

I modelli hanno volume e area di superficie; quindi è possibile calcolare le proprietà di massa direttamente dalla geometria creata. Anche se è possibile manipolare la visualizzazione dei modelli sullo schermo, essi rimangono dei solidi.

Pro/Engineer consente di creare un modello 3D della parte, tuttavia il processo di manufacturing richiede anche un disegno 2D della parte. Con Pro/E, dal modello 3D possiamo creare un disegno dettagliato (messa in tavola) associato completamente alla parte.

Il disegno è associato alla parte in quanto eseguendo una modifica nella parte, il sistema riporta tale modifica nel disegno e, allo stesso modo, quando è effettuata una modifica nel disegno, questa è riportata anche nella parte associata. Questa associatività assicura che il disegno rifletta sempre le modifiche di progettazione più recenti.

Associata a Pro/ENGINEER esiste l’applicazione Pro/MECHANICA™ che consente di fare studi di disegno (design studies).

Lo studio di disegno è un problema o una serie di problemi che si definiscono per un particolare modello; è il più alto livello d’organizzazione consentito da Pro/M. Ci tre tipi di studio di disegno:

Standard: E’ lo studio di disegno di base, può includere come minimo una ma svariate possibilità, d’analisi (per esempio un’analisi statica in aggiunta all’analisi modale). Per questo studio è necessario specificare la geometria, creare gli elementi, assegnare le proprietà del materiale,

(9)

definire carichi e vincoli, decidere il tipo d’analisi e di convergenza per poi alla fine vedere e recensire i risultati. Lo studio di disegno standard è comunemente (non correttamente) additato come “analisi agli elementi finiti”.

Più in particolare, permette di analizzare parti e assiemi per determinare le deformazioni, le tensioni massime, i modi propri, le temperature, i carichi d’imbozzamento (buckling) e la risposta alle funzioni eccitanti. Le informazioni restituite dal software (results) riguardano l’entità e la distribuzione di deformazioni e sforzi e sono presentate sia attraverso una matrice numerica sia mediante diagrammi ad iridescenza, di lettura immediata e di facile comprensione. La rappresentazione grafica dei risultati, in particolare, rende evidenti l’eventuale presenza di zone critiche (dove la concentrazione degli sforzi potrebbe indurre cedimenti), il grado d’omogeneità della distribuzione del carico e le modalità di deformazione dell’oggetto e fornisce utili indicazioni su come operare possibili modifiche migliorative. Quindi quest’analisi consente di verificare a priori una serie di requisiti legati alle geometrie e alla scelta del materiale per gli oggetti da realizzarsi, supportando le decisioni dei progettisti.

Sensibilità: Lo studio di sensibilità può essere lanciato affinché i risultati dell’analisi standard siano calcolati per diversi differenti valori di variabili

(10)

devono variare. Lo studio di sensibilità può poi essere di tipo locale oppure globale. Lo studio della sensibilità locale consente di analizzare localmente la sensibilità delle misure (ad esempio, la tensione) dei propri modelli rispetto a lievi modifiche di quota guida di Pro/E. Dallo studio della sensibilità globale è possibile determinare le modifiche nelle misure del modello (ad esempio, la tensione), in funzione delle variazioni di una quota guida di Pro/ENGINEER all’interno di un intervallo specifico.

Ottimizzazione: E’ lo strumento più potente di Pro/M. Parte da una FEA

di base del modello da analizzare. Occorre specificare un obbiettivo desiderato (come ad esempio la minima massa del corpo), vincoli geometrici (come dimensioni oppure entità geometriche di riferimento), vincoli sul materiale (come la massima tensione ammissibile) e una o più variabili di disegno che possono variare entro un range assegnato. Pro/M è capace allora di cercare attraverso lo spazio delle variabili di disegno e determinare il disegno migliore che soddisfa i vincoli imposti.

Pro/MECHANICA quindi è stato sviluppato come uno strumento per l’ottimizzazione dei progetti.

(11)

2.2.1 Analisi agli Elementi Finiti: Introdu

2.2.1 Analisi agli Elementi Finiti: Introdu

2.2.1 Analisi agli Elementi Finiti: Introdu

2.2.1 Analisi agli Elementi Finiti: Introduzione

zione

zione

zione

Vediamo di spiegare cosa s’intende per analisi agli elementi finiti per poi capire come opera il programma strutturale Pro/MECHANICA.

Per meglio comprendere il concetto è utile riferirsi ad un semplice schema di riferimento: consideriamo un dominio fisico R di perimetro B ed un dominio discretizzato con elementi finiti (figura successiva).

Fig. 2.8-Problema da risolvere: in (a) il dominio è fisico, mentre in (b) è

discretizzato per l’utilizzo con FEA.

L`idea illustrata si riferisce al piano (2D) ma il ragionamento può essere esteso al tridimensionale (3D).

Alcune variabili continue fisiche, ad esempio la temperatura, all’interno della regione R sono governate da leggi fisiche che dipendono dalla conoscenza delle

(12)

attraverso un’equazione differenziale parziale PDE (non ci sono fonti di calore e la temperatura sul corpo è nota):

0 2 2 2 2 = + y T x T δ δ δ δ (1)

La soluzione al problema può essere trovata come condizioni al contorno, ad esempio T=T(xy), assegnati al contorno B.

In ordine d’analisi del problema, la regione R è discretizzata attraverso singoli

elementi finiti, i quali globalmente approssimano la forma della regione. Questa discretizzazione è realizzata mettendo dei nodi lungo il contorno e all’interno della regione I nodi sono poi uniti da linee e si creano così gli elementi finiti. In un problema 2D questi sono triangoli oppure quadrilateri; nel problema 3D sono elementi tetraedrici oppure ad 8 nodi “bricks” (in alcuni software FEA sono possibili anche tipi d’elementi d’ordine superiore come ad esempio i prismi esagonali). Collettivamente, l’insieme di tutti gli elementi è chiamato rete degli elementi finiti (finite element mesh). Nell’analisi agli elementi finiti la ‘mesciatura” richiede un notevole sforzo sia dal punto di vista del set up che nell’azione computazionale vera e propria.

Nella soluzione agli elementi finiti, i valori delle variabili dipendenti (T nell’esempio) sono calcolati solo ai nodi. La variazione della variabile dentro ogni elemento è calcolata dal valore nodale come approssimativamente soddisfacente della legge differenziale PDE. Il metodo per fare questo è l’utilizzo dell’interpolazione polinomiale. Affinché la PDE sia soddisfatta, il valore nodale

(13)

per ogni elemento deve poter soddisfare un set di condizioni rappresentate da svariate equazioni lineari algebriche usualmente coinvolgenti altri valori nodali. Le condizioni al contorno sono implementate specificando il valore delle variabili ai nodi di contorno. Questo non garantisce che le vere condizioni al contorno del contorno continuo B siano soddisfatte fra i nodi nel caso del contorno discretizzato.

Quando tutti gli elementi individuali della mesh sono combinati, la discretizzazione e la procedura d’interpolazione danno come risultato la conversione del problema da quello della soluzione di un’equazione differenziale continua a quello di soluzione di un set (molto grande) d’equazioni lineari algebriche. Questo sistema, tipicamente, può essere costituito da molte migliaia d’equazioni la cui soluzione richiede speciali ed efficienti algoritmi numerici. La soluzione di questo sistema algebrico contenente i valori nodali, globalmente rappresenta una soluzione approssimata della soluzione continua della PDE iniziale. Un’importante questione è stabilire l’accuratezza di quest’approssimazione. Nelle classiche soluzioni FEM, le approssimazioni diventano più accurate raffinando mesh con elementi più piccoli. La situazione limite (non realizzabile) è quella d’elementi di dimensione nulla in cui i numeri d’equazioni diventano infiniti e la soluzione FEM della PDE è esatta. Vi sarà quindi una mesh ottima per cui l’accuratezza della soluzione è accettabile.

(14)

spostamento dalla posizione di riferimento (usualmente quella scarica). La deformazione del materiale (spostamento per unità di lunghezza) è allora calcolata dagli spostamenti prendendo la derivata rispetto alla posizione. Finalmente, le componenti di tensione in ogni punto del materiale sono calcolate dalla deformazione nel punto. Così, se l’interpolazione polinomiale per la variazione spaziale degli spostamenti di campo è lineare all’interno degli elementi, allora le tensioni e deformazioni saranno costanti dentro gli elementi, poiché la derivata di una funzione lineare è costante.

2.2.2 Approccio C

2.2.2 Approccio C

2.2.2 Approccio C

2.2.2 Approccio Classico: Convergenza di Elementi

lassico: Convergenza di Elementi

lassico: Convergenza di Elementi

lassico: Convergenza di Elementi----H

H

H

H

Non tutti gli elementi finiti discretizzati sono creati e calcolati alla stessa maniera fra i vari programmi FEA. La differenza più marcata si ha proprio tra Pro/M e gli altri programmi FEA.

I programmi classici d’approccio alla FEA spesso usano polinomi d’interpolazione per ogni elemento di basso ordine. Questo ha importanti conseguenze soprattutto nell’analisi delle tensioni.

Come già accennato nel paragrafo precedente, nell’analisi delle tensioni le variabili principali sono gli spostamenti ai nodi.

Le funzioni d’interpolazione all’interno d’ogni elemento sono tipicamente lineari (primo ordine). La deformazione è ottenuta facendo la derivata del campo degli spostamenti e la tensione è calcolata dalla deformazione del materiale. Per I

(15)

significa che le deformazioni e perciò le componenti di tensioni all’interno degli elementi sono dovunque costanti.

Elementi di basso ordine portano a grosse inaccuratezze di precisione nelle regioni di principale interesse, tipicamente dove ci sono vasti gradienti interni all’oggetto reale (si notano discontinuità e concentrazioni di tensioni irrealistiche che guidano all’inaccuratezza anche del valore della tensione massima). Vediamo un esempio limite: trave a sbalzo (incastrata) con un carico uniforme all’estremità e modellata con elementi solidi a mattone (parallelepipedi).

Fig. 2.9-Trave incastrata caricata,

discretizzata con un unico elemento nello spessore.

Con un singolo elemento di primo ordine attraverso lo spessore, il calcolo della tensione è lo stesso al di sopra e al disotto della trave: questo è chiaramente errato.

Utilizzando elementi del primo ordine, per avere allora una migliore accuratezza nello stimare la tensione è necessario utilizzare molti elementi piccoli: processo chiamato mesh refinement. Può non essere sempre possibile individuare facilmente le regioni dove è necessario infittire la mesh e quindi spesso è

(16)

significativi nella soluzione rispetto al precedente. Il processo continuo d’affinamento della mesh, che porta ad una “buona” soluzione, è chiamato

convergenza (convergence). Questo processo ha poi dei limiti pratici dovuti alla computazione: tempo e limite di memoria.

L’uso dell’affinamento della mesh per l’analisi di convergenza guida il cosiddetto metodo agli h-elementi della FEA.

Questo “h” è adottato nel campo dell’analisi numerica dove denota che la convergenza e l’accuratezza sono relative (nello stesso tempo proporzionali) al passo di sezione utilizzato nella soluzione, usualmente indicato da h.

Nella FEA h si riferisce alla sezione dell’elemento. Gli elementi, sempre di basso ordine, sono attribuiti come h-elementi e la procedura d’affinamento della mesh è chiamato h-convergenza (h-convergence). Questa situazione è descritta nella figura 2.10 parte (a) e (b), dove una serie di rettangoli con lo stesso passo ma d’altezza h diversa sono usati per approssimare la curva di un funzione continua.

Fig. 2.10-Approssimazione di una curva di funzione continua con elementi

(17)

Chiaramente più piccolo è il passo dei rettangoli e meglio è approssimata la curva della funzione.

La necessità di mesciare elementi relativamente piccoli ha come conseguenza l’utilizzo di h-elementi di passo sempre più piccolo. Gli elementi h non sono però molto tolleranti di curve estreme in termini d’obliquità, elevati gradienti di variazione della pendenza, variazioni rapide di sezione attraverso la mesh.

C’e da notare che l’incremento degli elementi per avere una mesh accettabile ha come conseguenza un incremento del costo della soluzione computazionale.

2.2.3 Approccio di Pro/MECHANICA: Convergenza di

2.2.3 Approccio di Pro/MECHANICA: Convergenza di

2.2.3 Approccio di Pro/MECHANICA: Convergenza di

2.2.3 Approccio di Pro/MECHANICA: Convergenza di

Elementi

Elementi

Elementi

Elementi----P

P

P

P

Rispetto a quanto in precedenza spiegato, Pro/M, ha una differenza incorporata fondamentale: piuttosto che affinare e ricreare la mesh più fine, la convergenza è ottenuta incrementando l’ordine dei polinomi d’interpolazione per ogni elemento. La mesh resta la stessa per ogni iterazione, chiamato p-loop pass. L’uso di polinomi d’interpolazione d’ordine elevato per l’analisi di convergenza comanda la classe dei metodi di FEA con p-elementi, dove il “p” sta per polinomiale. Questo metodo è rappresentato nella figura 2.11.

(18)

Fig. 2.11-Approssimazione della curva di funzione continua attraverso polinomi

d’interpolazione: nella (b) l’ordine dei polinomi è più grande e l’approssimazione migliore.

Solo gli elementi nella regione della curva con gradiente elevato sono approssimati con polinomi d’ordine elevato. Pro/M può controllare l’errore previsto nella soluzione e automaticamente aumentare l’ordine polinomiale solo per quegli elementi dove è richiesto. Così l’analisi di convergenza è realizzata completamente in automatico con il processo di soluzione che continua finché non è soddisfatto il limite d’accuratezza impostato all’inizio dell’analisi. Con Pro/M il limite dell’ordine polinomiale è 9: in teoria sarebbe possibile andare ad ordini più grandi di questo, ma il costo in termini computazionali s’innalza notevolmente.

Se la soluzione non può convergere rapidamente con i 9 ordini polinomiali, può essere necessario ricreare la mesh con una densità più elevata d’elementi.

(19)

 La medesima mesh può essere usata per tutta l’analisi di convergenza, piuttosto che ricreare la mesh oppure fare la raffinatura locale come invece richiesto nell’analisi con elementi-h.  La mesh è virtualmente sempre più scadente e contiene meno

elementi che nel caso “h” (vedi figura 2.12). Essendo il numero degli elementi ridotti c’è una riduzione iniziale del carico computazionale, ma se l’ordine dei polinomi necessario alla convergenza è elevato allora questo vantaggio è alquanto ridotto.  La forma e la sezione degli elementi non hanno l’importanza che

invece rivestono nel caso dell’analisi con gli elemento-h.

Fig. 2.12-Mesh: (a) mesh con elementi solidi tetraedrici a 4 nodi tipica

dell’elementi-h; (b) mesh semplificata tipica di Pro/MECHANICA

 Generazione automatica della mesh (autoGEM), la quale produce una mesh povera d’elementi per l’analisi elementi-h, ma molto

(20)

 La stessa mesh è usata per tutte le analisi: la mesh può essere direttamente associata alla geometria. Questo spiega perché Pro/M è in grado di eseguire studi di sensibilizzazione e d’ottimizzazione, durante i quali i parametri geometrici del corpo possono cambiare: il programma non ha la necessità di “rimesciate” costantemente la parte.

A proposito della convergenza è opportuno specificare le diverse scelte offerte da Pro/M:

 Quick Chech: questo non è un metodo di convergenza in quanto il modello è elaborato solo con un singolo e fissato ordine polinomiale (basso, usualmente 3). Il risultato di quest’analisi non può mai essere accettata. Questo tipo d’analisi quindi serve per far elaborare

rapidamente il modello e vedere se ci sono errori palesi e grossolani nel modello stesso, come ad esempio quelli nell’assegnazione dei vincoli.

 Single-Pass Adaptive: Più che nel quick-check, ma meno che in un’elaborazione con completa convergenza, il metodo del singolo passo d’adattamento performa un passo con un basso ordine polinomiale fissando l’accuratezza della soluzione e poi fa un passo finale con gli stessi elementi innalzando ad un ordine per il quale il risultato che si ottiene è ragionevole. Salvo che il modello sia

(21)

computazionalmente molto intenso, questo metodo ha una buona condotta d’elaborazione.

 Multi-Pass Adaptive: E’ l’ultima nell’analisi di convergenza. I passi multipli (p-loop) sono fatti attraverso la soluzione con gli ordini dei polinomi d’interpolazione degli elementi crescenti ad ogni passo. Questo approccio iterativo continua fintanto che la soluzione non converge con una specificata accuratezza o con uno specificato massimo ordine dei polinomi utilizzato (default 6, massimo 9). Alla conclusione dell’elaborazione si può esaminare la misura della convergenza. Salvo che non si abbia una buona ragione per non farlo, le conclusioni finali sull’analisi di un pezzo vanno fatte con i risultati ottenuti utilizzando questo metodo di convergenza.

Fig. 2.13-Finestra per scegliere il

tipo di convergenza e le opzioni all’interno della convergenza stessa (ordine dei polinomi).

(22)

2.3 Modalità di Funzionamento e Modellazione con

2.3 Modalità di Funzionamento e Modellazione con

2.3 Modalità di Funzionamento e Modellazione con

2.3 Modalità di Funzionamento e Modellazione con

Pro/MECHANICA

Pro/MECHANICA

Pro/MECHANICA

Pro/MECHANICA

Pro/M, più specificatamente, è una famiglia di prodotti per l’analisi di corpi e assemblati. I tre prodotti principali sono Pro/MECHANICA STRUCTURE™, Pro/MECHANICA MOTION™ e Pro/MECHANICA THERMAL™. Queste applicazioni sono scritte per l’ingegneria meccanica nella sua definizione generica e ne utilizzano quindi la teoria e la terminologia.

 Pro/M STRUCTURE: pacchetto d’analisi strutturale che provvede alla modellizzazione strutturale con capacità d’ottimizzazione sia per la singola parte sia per strutture create come assemblaggio (assembly) di più elementi. Vi è la possibilità di creare diverse tipologie d’analisi: statica, nodale, di contatto, con precarico, vibrazioni, ecc.

 Pro/M MOTION: pacchetto d’analisi del moto (dinamica) in cui si ha la modellizzazione e conseguente ottimizzazione di meccanismi e loro modelli. I tipi d’analisi possibili sono: 3D statiche, cinetostatiche, dinamiche, dinamiche inverse e controllo dell’interferenza fra le parti in movimento.

 Pro/M THERMAL: pacchetto d’analisi termica in cui sono modellati carichi termici e transienti termici a parti oppure ad elementi fatti per assemblaggio. Come nel caso dell’applicazione strutturale, si può usare il prodotto per determinare la sensibilità del modello alle variazioni della forma e delle proprietà (design study).

(23)

Con Pro/MECHANICA ci sono tre modi di operare:

 INTEGRATED MODE: è una funzionalità integrata di Pro/Engineer in cui posso creare analizzare e ottimizzare il modello creato dentro Pro/Engineer.

 LINKED MODE: utilizza Pro/E e Pro/M indipendente simultaneamente, con ognuno che esegue il proprio lavoro. In questo caso si cambia indietro e avanti tra l’interfaccia Pro/E e l’interfaccia separata di Pro/M. Quando un programma è attivo, l’altro è chiuso oppure rimane aperto come sfondo senza essere attivo.

 INDIPENDENT MODE: Utilizza Pro/M indipendente per tutti i tipi di modello, analisi e studio di disegno. Come per gli altri due modi si costruisce la parte in Pro/E. In ogni caso si usa l’interfaccia indipendente Pro/M per completare tutta la modellazione del corpo:

• Curare o aggiungere parti geometriche • Aggiungere tutte le entità di modellazione. • Aggiungere elementi

• Fare analisi

• Aggiungere le variabili di disegno. • Fare lo studio del disegno.

(24)

C’è da dire che le modifiche fatte in questa modalità non hanno effetto sulla parte costruita con Pro/E perciò dopo avere ottimizzato il modello e necessario far ripartire Pro/E e manualmente aggiungere e fare i cambi ottenuti come risultati dall’ottimizzazione in Pro/M.

Fig. 2.14-Modi di operare con Pro/MECHANICA. • Tutti i tipi d’analisi • Solo modelli 3D • Geometria creata solo in Pro/Engineer • Entità di modellazione create in Pro/Engineer per interfaccia • Misure basate sulla geometria • Gli elementi sono

generati automaticament e e non si possono vedere o manipolare • Solo parametri di disegno creati attraverso Pro/engineer • Tutti i tipi d’analisi • Modelli 2D e 3D • Geometria creata solo in Pro/Engineer • Entità di modellazione creata tipicamente in Pro/Mechanica per interfaccia • Tutte le misure • Elementi creati manualmente oppure attraverso AutoGEM • Parametri di disegno in Pro/Engineer e variabili di disegno attraverso Pro/Mechanica • Tutti i tipi d’analisi • Modelli 2D e 3D • Geometria creata in Pro/Engineer e in Pro/Mechanica • Entità di modellazione create in Pro/Mechanica per interfaccia • Tutte le misure • Elementi creati manualmente oppure attraverso AutoGEM • Variabili di disegno di forma e proprietà create in Pro/Mechanica INTEGRATED INTEGRATED INTEGRATED INTEGRATED MODE MODE MODE MODE LINKED LINKED LINKED LINKED MODE MODE MODE MODE INDIPENDENT INDIPENDENT INDIPENDENT INDIPENDENT MODE MODEMODE MODE

(25)

Quanto spiegato sopra è valido per tutto il pacchetto Pro/MECHANICA. In particolare però nello studio successivo si utilizza il modo structure e quindi la seguente linea guida d’utilizzo di Pro/M si rivolge a tale applicazione.

Partendo dalla semplificazione geometrica del modello, ci sono generalmente diversi steps che devono essere seguiti per fare l’analisi strutturale. Questi sono:

1. Creazione della parte o dell’assemblato usando Pro/E.

2. Identificazione del tipo di modello.

3. Specificazione delle proprietà del materiale, modello dei vincoli e applicazione dei carichi.

4. Discretizzazione della geometria per produrre la mesh d’elementi finiti (AutoGem oppure manualmente secondo il modo di operare).

5. Risoluzione del sistema d’equazioni.

6. Visualizzazione dei risultati d’interesse.

7. Revisione critica dei risultati e, se necessario, ripetizione dell’analisi.

La procedura è anche illustrata nello schema della figura 2.15.

1. La geometria del modello è creata attraverso il modellatore di solidi Pro/ENGINEER. E’ possibile analizzare una singola parte oppure un elemento assemblato (modalità assembly: fatto dall’unione di diverse

(26)

elementi che semplificano il vero disegno, per avere come risultato una simulazione rapida (attraverso gusci, travi, masse concentrate, molle e giunzioni saldate).

(27)

2. Entrando in Pro/M il tipo di modello deve essere identificato (3D, plane stress, plane strain oppure 2D axisymmetric).

3. Specificazione dei parametri di simulazione. Principalmente:

A) Definizione delle proprietà del materiale per il modello. Non è necessario che tutti gli elementi abbiano lo stesso materiale, per esempio, parti differenti di un elemento assemblato possono essere fatte da materiali diversi. Per le analisi degli sforzi e deformazioni (stress and strain) le proprietà da definire richieste sono il modulo di Young e il coefficiente di Poisson. Esiste anche una libreria in cui sono contenuti i materiali più comunemente utilizzati con le proprietà già prefissate (acciaio, alluminio, bronzo, tungsteno……..).

B) Identificazione delle soluzioni di vincolo (constraints). I vincoli possono essere assegnati puntualmente, su delle curve oppure su delle superfici. I gradi di libertà sono sei e quindi abbiamo le tre traslazioni (X, Y, Z) e le tre rotazioni attorno a tali assi. Possiamo cosi scegliere il sistema di vincolo andando a fissare oppure no i diversi gradi di libertà.

(28)

Vi è anche la possibilità di assegnare la cedevolezza al vincolo definendo lo spostamento al singolo grado di libertà. Di default i vincoli sono assegnati facendo riferimento al sistema di coordinate cartesiane WCS (World Coordinate Systems).Vi è però anche la possibilità di riferirsi ad un altro sistema di riferimento creato in precedenza (possibilità di creare sistemi di coordinate cilindrici o sferici).

Fig. 2.16-Finestra per l’assegnazione dei vincoli.

C) Definizione del carico applicato al modello (loads). Esistono molteplici possibilità di definire il carico applicato al modello:

••••

puntuale (concentrato: sia forza sia momento)

••••

spigoli/curve

••••

superficie

••••

pressione

••••

di cuscinetto (bearing)

••••

di gravità

••••

centrifugo

(29)

Per l’applicazione di questi carichi è possibile scegliere differenti distribuzioni (forze per unità di lunghezza, carico totale in un punto, carico totale) e metodi di variazioni spaziali (uniforme, funzione di coordinate). Queste scelte permettono di simulare accuratamente le più disparate vere condizioni di carico.

D) Definizione dei punti di Misura (measures). Per avere la misura di uno spostamento ( ma lo stesso si può dire anche per altre grandezze, in funzione anche del tipo d’analisi impostata) in uno o più punti specifici del corpo, è necessario definire tali punti in questa fase.

4. Creazione degli elementi finiti (mesh) per il modello geometrico attraverso un sottoprogramma interno a Pro/M chiamato AutoGEM. Con il nome di AutoGEM s’intende Automatic Geometric Element Model: sistema integrato che crea automaticamente gli elementi per il modello. Dopo che AutoGEM ha riempito il modello con gli elementi, Pro/M può calcolare gli spostamenti le reazioni e gli sforzi. Questo processore è dotato anche di un sommario con messaggi in uscita che possono essere consultati se la generazione degli elementi si arresta a causa, per esempio, d’insufficienza di vincoli assegnati al modello (un sistema di vincoli globalmente labile è

(30)

5. Risoluzione del “problema” attraverso la soluzione delle equazioni caratterizzanti l’intero sistema: soluzione dei polinomi d’interpolazione fra gli elementi. Le deformazioni sono ottenute facendo la derivazione degli spostamenti e gli sforzi sono conseguenza degli sforzi sul materiale.

6. Visualizzazione dei risultati attraverso iridescenza sull’elemento in analisi. Vi è la possibilità di visualizzare diversi parametri: spostamenti, sforzi, deformazioni, ecc, variandone la scala di visualizzazione. Inoltre è possibile anche la visualizzazione degli spostamenti e delle deformazioni in modalità animation per avere un’idea delle zone del corpo che si deformano eccessivamente e per esempio necessitano di rinforzi destinati principalmente all’irrigidimento.

7. Analisi critica dei risultati (operazione questa che richiede esperienza e capacità interpretativa) con conseguente variazione dimensionale e strutturale ove necessario. Necessità di ripetere l’analisi con il modello modificato in base alle analisi fatte in precedenza.

(31)

2.3.1 Definizione del M

2.3.1 Definizione del M

2.3.1 Definizione del M

2.3.1 Definizione del Materiale

ateriale

ateriale

ateriale

Per il tipo di studio fatto sul corpo pompa è necessario spiegare più dettagliatamente come si definisce il materiale all’interno dell’applicazione Pro/MECHANICA.

Come già accennato in precedenza, l’applicazione ha una libreria di materiali comuni considerati semplicemente isotropi in cui i valori delle costanti elastiche sono predefiniti e in accordo con i valori dettati nella letteratura tecnica (alluminio 2014 o 6061, bronzo, acciaio, tungsteno...ecc).

Esiste però anche la possibilità di definire autonomamente le caratteristiche del materiale per poi assegnarle al corpo/i su cui eseguire l’analisi.

Vi è la possibilità di definire tre tipologie di materiali:

 Isotropo

 Ortotropo

 Trasversalmente isotropo

In ogni caso occorre assegnare anche il valore della densità.

Per definire il materiale isotropo occorre assegnare il modulo di Young e il coefficiente di Poisson.

Per il materiale ortotropo occorre invece definire le nove costanti tecniche In ogni caso occorre assegnare anche il valore della densità. In ogni caso occorre assegnare anche il valore della densità.

(32)

Il materiale trasversalmente isotropo: lamina con una proprietà nella sua dimensione caratteristica e con proprietà elastiche in ogni modo uguali nelle direzioni trasversali. Per definire tale materiale:

 Moduli di Young (E2=E3, E1);

 Coefficienti di Poisson (ν21 =ν31, ν32)

 Moduli d’elasticità tangenziali (G12 =G13).

Nella figura successiva è rappresentata la finestra che si apre per definire il materiale nella tipologia ortotropica. I coefficienti d’espansione termica è necessario assegnarli solo nel caso occorra fare uno studio con i cicli termici. In ogni caso non vi è la possibilità di fare analisi di tipo non lineare: non è possibile adottare una legge costitutiva (legame sforzi-deformazioni) per il materiale diversa da quella semplicemente lineare di Hooke.

Fig. 2.17-Finestra per l’assegnazio ne del materiale ortotropo.

(33)

E’ importante notare che le tre direzioni principali (individuate da tre piani mutuamente ortogonali) indicate con “1”, ”2” e “3” in Pro-M, corrispondono automaticamente (di default) alle direzioni “X”, ”Y” e “Z” del sistema di riferimento caratteristico WCS (World Coordinate Systems). E’ però anche possibile assegnare alle direzioni principali “1,2,3” altre orientazioni e riferirci anche ad un altro sistema di riferimento (da creare in precedenza). Questo è possibile farlo attraverso il comando “material orientation definition”.

All’interno del comando material orientation è possibile selezionare diversi tipi d’entità secondo la modalità con cui operiamo:

Modalità Tipo di modello Tipo d’entità

1 Integrated 3D Parte Superficie 2 Integrated 2D Superficie 3 FEM 2D Superficie 4 Independent 3D Volume/Solido Superficie/Shell 5 Independent Plane stress Superficie/Piastra 2D 6 Independent Plane strain/

axisymmetric Superficie/Solido 2D

Tab. 2.1-Connessione tra entità e modalità di operare.

Nella modalità integrata, modello 3D, ed entità parte, è possibile far corrispondere alle direzioni principali “1”, ”2”, ”3” i diversi assi del sistema WCS oppure associarli agli assi di un sistema di riferimento ausiliario in precedenza creato.

(34)

Nell’esempio a fianco le direzioni principali “1”, “2”, “3” corrispondono rispettivamente alle direzioni “Y”, “X”, “Z”, del sistema di riferimento normale di Pro-M (WCS). E’ possibile anche ruotare le direzioni principali d’orientamento del materiale assegnando un opportuno angolo nelle ultime tre righe della figura a fianco. Le rotazioni sono fatte attorno all’asse a cui assegniamo l’angolo di rotazione.

Fig. 2.18-Finestra per l’assegnazione dell’orientazione del materiale.

Nell’esempio a fianco le direzioni principali “1”, ”2”, ”3” corrispondono rispettivamente alle direzioni “R”, ”T”e “Z” di un sistema di riferimento cilindrico (indicato con CS1) precedentemente creato all’interno dell’applicazione stessa di Pro-M. Anche in questo caso è possibile utilizzare la rotazione degli assi.

Fig. 2.19-Esempio assegnazione

orientamento materiale con un sistema cilindrico CS1.

(35)

Nella modalità integrata, modello 3D, ed entità superficie è possibile definire le direzioni principali del materiale relativamente a diverse grandezze:

 Referenced Coordinate System: le direzioni del materiale sono

determinate riferendosi ad un sistema di riferimento coordinato (di

default è quello WCS altrimenti va creato precedentemente); esistono poi due opzioni:

o Projected X Axis: Quest’opzione definisce la direzione

principale 1 del materiale che deve essere la direzione dell’asse X del sistema di riferimento coordinato proiettato sulla superficie.

o Projected Closest Axis: Quest’opzione definisce la direzione 1

principale del materiale attraverso una serie di calcoli. Per calcolare questo valore, il software prima determina quale direzione dei tre sistemi di coordinate (X, Y, Z) o (R, T, Z) o

(R, T, P) è più vicina alla normale alla superficie. Dopo, il software, prende la direzione del sistema di riferimento che segue la precedentemente direzione selezionata. Per esempio, se la direzione X è la più vicina alla normale alla superficie, il software seleziona la direzione Y; se Z è la direzione più vicina alla normale alla superficie, il software prende la direzione X.

(36)

 First Parametric Direction (solo elementi shell): Quando è selezionata quest’opzione, la direzione principale 1 del materiale è la stessa della prima direzione parametrica della superficie la quale può variare da punto a punto della superficie stessa. La direzione principale 3 è sempre normale alla superficie; la direzione 2 è definita per essere normale alle altre due direzioni principali 1 e 3.

 Second Parametric Direction (solo elementi shell): Quando è selezionata quest’opzione, la direzione principale 1 del materiale è la stessa della seconda direzione parametrica della superficie la quale può variare da punto a punto della superficie stessa. La direzione principale 3 è sempre normale alla superficie; la direzione 2 è definita per essere normale alle altre due direzioni principali 1 e 3.

 Projected vector (solo elementi shell): Dato un vettore, la direzione

principale 1 è parallela alla proiezione del vettore sul piano tangente alla superficie nel punto d’interesse. La direzione 3 è normale alla superficie, mentre la 2 è ortogonale alle direzioni 1 e 3. Le direzioni d’orientamento del materiale cambiano con la posizione sulla superficie.

(37)

Fig. 2.20-Orientamento materiale con “projected vector” per entità superfici.

Il vettore può essere assegnato attraverso le sue componenti rispetto al sistema di riferimento cartesiano WCS; oppure specificando due punti che mi rappresentino rispettivamente l’inizio e la fine del “segmento” vettore.

(38)

Nella tabella successiva sono riassunte quelle che sono le capacità e le funzionalità principali dell’applicazione Pro/MECHANICA.

CAPACITA’ E FUNZIONI PRINCIPALI DI Pro/MECHANICA

MECHANICA OPZIONI DESCRIZIONE MODO DI OPERARE  INDIPENDENT  LINKED  INTEGRATED L’APPLICAZIONE Pro/MECHANICA OPERA NEL

RISPETTO DI Pro/ENGINEER TIPO DI MODELLO  3D  PLANE STRESS  PLANE STRAIN  AXISYMMETRIC

STRUTTURE DI BASE DEL MODELLO. TIPO DI ELEMENTI  GUSCIO  TRAVE  SOLIDO  MOLLA  MASSA

ELEMENTI TIPICI CHE POSSONO ESSERE UTILIZZATI

IN UN MODELLO (IDEALIZATIONS) METODO DI ANALISI  STATICA  MODALE  INSTABILITA’  MODALE CON PRECARICO  INSTABILITA’ CON PRECARICO LE SOLUZIONI FONDAMENTALI CHE POSSONO ESSERE CERCATE

PER IL MODELLO. METODO DI CONVERGENZA  QUICK CHECK  SINGLE-PASS ADAPTIVE  MULTI-PASS ADAPTIVE

METODI PER MONITORARE LA CONVERGENZA DELLA SOLUZIONE. STUDIO DI DISEGNO  STANDARD  SENSITIVITY  OPTIMIZATION

METODI DI GRANDE LIVELLO PER ORGANIZZARE L’OTTIMIZZAZIONE COMPUTAZIONALE DEL MODELLO NELLA FASE DI

PROGETTAZIONE.

Tab. 2.2-Funzionalità principali dell’applicazione Pro/MECHANICA.

(39)

2.3.2 Osservazioni Conclusive sull’Orientamento del

2.3.2 Osservazioni Conclusive sull’Orientamento del

2.3.2 Osservazioni Conclusive sull’Orientamento del

2.3.2 Osservazioni Conclusive sull’Orientamento del

Materiale

Materiale

Materiale

Materiale

Quando sono assegnate le caratteristiche di un materiale (caso ortotropo o trasversalmente ortotropo) l’applicazione Pro-M si riferisce al sistema WCS oppure ad altri sistemi di riferimento in precedenza creati e poi assegnati. Questi però sono sistemi di riferimento globali per il corpo sotto analisi e quindi non seguono quelle che sono le direzioni degli elementi infinitesimi in cui può essere scomposto qualsiasi corpo (non seguono cioè la “curvatura della superficie costituente il corpo”). Questa osservazione è scaturita dallo studio dei manuali dell’applicazione Pro-M ma anche dal contatto telefonico con il customer service della PTC. Com’è facile capire questa è una limitazione nella modellizzazione perché appena un corpo assume forme complesse, discostandosi da quelle elementari di piastra, cilindro, semisfera, ecc, diventa difficile assegnare la giusta ortotropia riferendosi ad un sistema di riferimento fisso globale.

Quanto precedentemente spiegato circa l’assegnazione del material orientation tramite le superfici e le rispettive curve parametriche è valido esclusivamente nel caso che l’elemento trattato sia uno “shell” ovvero un guscio e non un elemento “parte” 3D come invece richiesto nella presente trattazione. Questa ultima osservazione è frutto di numerose prove fatte su elementi semplici (di cui si conoscono i risultati e gli andamenti caratteristici di sforzi e deformazioni) in cui

(40)

l’orientazione del materiale riferendoci alle superfici e alle curve parametriche a loro assegnate, così da risolvere il problema dell’orientazione locale del materiale quando l’elemento presenta forme complesse curvate.

Quindi nel caso di corpi a geometria comune complessa in cui il materiale costituente è ortotropo oppure trasversalmente ortotropo le orientazioni delle direzioni principali vanno trattate attraverso l’opzione “material orientation” andando a scomporre il corpo in elementi aventi orientazione presumibilmente comune (nella presente trattazione si parlerà d’orientamento comune delle fibre) per poi ricostruire il corpo originario attraverso un assemblaggio (modalità

assembly dell’applicazione Pro-E) e infine passare alla modalità Pro-M e relativa analisi. Per meglio capire conviene fare un semplice esempio:

Fig. 2.21-Esempio di scomposizione di un corpo in sottoparti per poter assegnare

(41)

L’ elemento “bossolo di cartuccia” rappresentato sopra può essere scomposto in un elemento cilindrico ed in quello sferico di chiusura. Creando quindi il bossolo in assembly attraverso i due elementi, nell’applicazione Pro-M posso assegnare lo stesso materiale ai due componenti ma differenziarne l’orientamento assegnando un diverso material orientation agli elementi stessi.

Ad esempio, per la parte cilindrica posso riferirmi ad un sistema di riferimento cilindrico mentre per la parte sferica ad un sistema di riferimento sferico e far sì che i moduli elastici principali (definiti in material definition) corrispondano a piacimento agli assi coordinati dei sistemi di riferimento assegnati.

Quindi l’ortotropia di un corpo a geometria complessa va trattata lavorando nella modalità assembly, scomponendo il pezzo in sottocomponenti di cui in precedenza è stato individuata il tipo d’ortotropia e quindi le direzioni dei moduli elastici principali.

(42)

CA

CA

CA

CAPITOLO 3

PITOLO 3

PITOLO 3

PITOLO 3

Materiali Compositi

Materiali Compositi

Materiali Compositi

Materiali Compositi

3.1 Introduzione ai Materiali Compositi

3.1 Introduzione ai Materiali Compositi

3.1 Introduzione ai Materiali Compositi

3.1 Introduzione ai Materiali Compositi

In fasi di rapida evoluzione tecnologica quali quelli dell’era in cui viviamo e quella prevedibile negli anni prossimi, le applicazioni più diverse nel campo aeronautico, civile, meccanico, le applicazioni industriali o di tipo voluttuario come per attrezzi sportivi richiedono con continuità materiali dalle proprietà sempre più elevate.

Tesi a soddisfare queste richieste, gli sforzi delle ricerche di laboratorio eseguite negli ultimi anni presso Università ed enti di ricerca applicata dei paesi più avanzati hanno portato alla conoscenza di tecniche di fabbricazione e di criteri di progettazione di una nuova generazione di materiali, noti come MATERIALI COMPOSITI, che permettono di sfruttare con il rendimento massimo i materiali oggi a disposizione dei progettisti per il disegno di una struttura che realizzi i migliori valori delle proprietà in termini di resistenza, rigidità e peso per applicazioni a bassa, media e alta temperatura, o ancora in termini di duttilità, resistenza a fatica, refrattarietà alla corrosione.

Che con l’uso di materiali compositi si potevano produrre materiali con proprietà meccaniche migliori rispetto a quelle dei singoli costituenti, era già noto agli

(43)

antichi egizi che, migliaia d’anni fa, miscelavano paglia e fango per ottenere mattoni da costruzione più resistenti e meno fragili di quelli ottenuti da solo fango; e che le proprietà di un’asse di legno dipendano dalla direzione secondo la quale è sollecitata, è noto a chi, cercando di romperla, la dispone secondo la direzione che la vede opporre la minore resistenza. Fibre di paglia, in un caso, e fibre di cellulosa, nell’altro, aggiunte al fango o alla lignina, non soltanto ne modificano le proprietà, ma ne consentono l’uso per compiti strutturali per i quali fango e lignina da soli sarebbero insufficienti. E così, l’aggiunta di tondini di ferro al calcestruzzo impartisce al calcestruzzo armato resistenza alla trazione, e pertanto alla flessione, permettendone l’uso per la realizzazione di strutture soggette a carichi diversi, e l’uso di fibre ad elevate proprietà meccaniche consente di impiegare materiali polimerici per fabbricare aerei od automobili. La combinazione di due o più materiali diversi in un materiale composito produce oggi materiali e strutture che trovano applicazioni vaste e sempre più numerose. In alcuni casi il materiale composito è prodotto per impartire alla matrice che lo contiene proprietà genericamente migliori, in molti casi il materiale composito è progettato in modo tale che le sue proprietà siano specifiche e volute. Limitandoci al caso dei materiali compositi di maggiore uso per applicazioni strutturali, e pertanto ai materiali compositi a matrice polimerica rinforzati da fibre, è interessante comparare le proprietà meccaniche d’alcune fibre e matrici

(44)

Densità (g/cm3) Modulo elastico (GPa) Resistenza a trazione (MPa) Deformazione a rottura (%) Coeff. espansione termica (10-6/°C) FIBRE Vetro tipo E 2,54 72,4 3450 4,80 5 Carbonio Amoco T-300 1,76 231 3650 1,60 longitudinale -0,6 radiale 7-12 Carbonio Hercules AS-4 1,80 248 4070 1,65 - Carbonio Amoco P-100 2,15 758 2410 0,32 longitudinale -1,45 Aramidiche Kevlar 49 1,45 131 3620 2,8 longitudinale -2 radiale 59 Polietilene Spectra-1000 0,97 172 3000 2,7 - Boro 2,7 393 3100 0,79 5 Allumina Fiber FP 3,95 379 1900 0,4 8,3 MATRICI Epossidiche 1,2-1,3 2,75 4,10 55-130 4-8 50-80 Poliestere insature 1,1-1,4 2,1-3,45 34,5-103,5 1-5 - PEEK 1,3 1,32 3,2 100 50 47 PPS 1,36 3,3 83 4 49 PEI 1,27 3 105 60 56

Tab. 3.1-Proprietà d’alcune fibre e matrici polimeriche comunemente

(45)

La denominazione di materiale composito, che potrebbe in realtà assegnarsi alla totalità dei materiali strutturali adoperati normalmente, è invece riservata a quei materiali in cui una delle fasi presenti sia in forma di filamenti sottili a sezione di norma circolare.

Da ciò il nome, più preciso, di compositi fibrosi. Questi materiali sono costituiti quindi, schematicamente, da una fase continua (MATRICE) che ingloba rigidamente la fase discontinua (FIBRE) disposta opportunamente secondo orientazioni volute.

I materiali compositi si suddividono in PLASTICI, metallici e ceramici, secondo il tipo di materiale che costituisce la fase matrice; la fase fibrosa costituente il rinforzo può essere di natura metallica, vetrosa, ceramica, policristallina o monocristallina.

Si definiscono inoltre compositi a fibre discontinue quelli in cui le fibre non sono di lunghezza pari all’elemento di struttura che compongono, e compositi a fibre continue quelli in cui le fibre sono lunghe per tutta la lunghezza a disposizione.

(46)

Fig. 3.2-Sezione longitudinale di un composito a fibre discontinue, parallele e a

caso.

Le figure 3.1 e 3.2 mostrano, rispettivamente in sezione in sezione, due tipi schematici di compositi: a fibre continue e a fibre discontinue parallele e non. Nel caso discontinuo ha forte influenza sulle caratteristiche fisico-meccaniche il rapporto di forma della fibra, definito come rapporto tra lunghezza e diametro della fibra stessa.

Le fibre possono ancora essere disposte in orientazioni diverse nella matrice e precisamente possono essere tutte parallele fra loro (fibre unidirezionali) o possono essere disposte lungo orientazioni discrete, o ancora possono essere disposte a caso.

Nel caso di fibre unidirezionali si avrà una spiccata anisotropia delle proprietà elastiche e meccaniche del materiale, negli altri casi un minor grado d’anisotropia con forte attenuazione dei valori di punta.

(47)

Fibre in più direzioni possono essere poste in modo casuale, mediante l’uso di fibre discontinue; le fibre continue possono essere poste in più orientazioni usando strati sovrapposti ognuno costituito da fibre parallele fra loro e sovrapponendo gli strati con i relativi assi in orientazioni diverse. Le fibre possono ancora essere usate sotto forma di tessuti in cui esse sono già posizionate in diverse orientazioni.

Il primo dei due sistemi descritti per le fibre continue è quello che permette di ottenere le migliori proprietà meccaniche.

I materiali compositi derivano l’elevata potenzialità delle proprietà meccaniche dal fatto fisico, noto da tempo ai progettisti esperti di materiali, che le proprietà meccaniche aumentano notevolmente al diminuire delle dimensioni del pezzo di materiale su cui si effettua la misura. Ciò avviene, in breve, sia per l’eliminazione o minore probabilità di presenza d’intagli superficiali sia per i meccanismi strutturali coinvolti nel raggiungimento di dimensioni molto piccole come nel caso delle fibre sottili, e ciò per qualunque tipo di materiale sia di natura metallica sia d’altra natura.

Quanto descritto permette di spiegare perché si sia pensato di adoperare le elevate proprietà dei materiali in forma di fibre sottili nella realizzazione dei nuovi materiali.

(48)

sfruttare completamente il materiale a disposizione posizionando fibre solo in alcune direzioni scelte in modo tale che risultino equilibrati macroscopicamente i carichi agenti sulla struttura.

Ciò può essere ottenuto in due modi sostanzialmente diversi: per mezzo della costruzione di laminati cioè di strutture costituite da più lamine monodirezionali sovrapposte ad angoli diversi oppure producendo un solo elemento in cui sono presenti fibre distribuite in più direzioni ( o a caso) senza divisione in strati.

Il primo sistema è il più corretto e valido ai fini del migliore uso del materiale, per produrre una struttura con un moderato grado d’anisotropia.

Usando invece fibre distribuite a caso nella matrice (distribuzione random) si ottiene più facilmente un materiale in pratica isotropo nel piano, ma le cui caratteristiche sono di molto inferiori a quelle massime previste dalle leggi della meccanica del rinforzo. Il valore massimo di σ medio, ad esempio, che sarebbe possibile ottenere in fibre corte distribuite a caso, si riduce ad un valore non maggiore di 1/6 di σf, la resistenza possibile offerta dalle fibre.

Il composito presenta quindi resistenza e rigidità di gran lunga inferiori alle massime ottenibili dai materiali usati.

(49)

SETTORE

INDUSTRIALE ESEMPI

AERONAUTICO-AEROSPAZIALE

Parti d’ali e code, fusoliere, antenne, pale d’elicottero, carrelli d’atterraggio, sedili, pavimenti, pannelli interni, serbatoi, involucri esterni e coni terminali di razzi e missili, tubi di lancio.

AUTOMOBILISTICO

Parti di carrozzeria, cabine per camion, spoilers, quadri comandi, pannelli porta-strumenti, alloggiamenti per luci, paraurti, molle per sospensioni, organi di

trasmissione, ingranaggi, cuscinetti.

NAVALE - MARINO

Scafi, ponti, alberi, vele e relative stecche, profili

strutturali, sagole di salvataggio, boe d'ancora, protezioni per motori, pannelli interni.

CHIMICO Tubazioni, serbatoi, recipienti in pressione, tramogge,

valvole, pompe, ventole e giranti, grate per pavimenti.

EDILE

Passerelle e ponti per traffico leggero, condotte sotterranee, recinzioni, profilati strutturali, zoccolino corrimano, ringhiere, grondaie, profili per finestre, elementi di rinforzo per il recupero edilizio.

ELETTRICO

Basette per circuiti stampati, pannelli, alloggiamenti, interruttori, isolatori, connettori, condotte porta cavi, scale isolate, corde, tralicci, componenti per motori e trasformatori, utensili isolati.

AGRICOLO

Strutture per silos e serre, palificazioni per piantagioni, recintazioni, archetti per tunnels, scale, botti per

alimenti.

SPORT E TEMPO LIBERO

Mazze da golf, racchette da tennis, elmetti protettivi, sci, tavole da surf e snow-board, archi e frecce, biciclette, canne da pesca, canoe, piscine, componenti per caravan e roulotte.

(50)

3.2 Materiali Compositi a Fibra Corta

3.2 Materiali Compositi a Fibra Corta

3.2 Materiali Compositi a Fibra Corta

3.2 Materiali Compositi a Fibra Corta

La precedente introduzione generale ai materiali compositi è doverosa perché il materiale interessato nella presente trattazione è UN MATERIALE COMPOSITOA FIBRA CORTA (Short-fiber composites). Compositi rinforzati con fibre discontinue sono caratterizzati come compositi a fibra corta. Nella pratica costruttiva si parla di compositi a fibre corte allorquando questi sono rinforzati con fibre aventi lunghezza compresa tra 1 e 8 Cm. Più propriamente si parla di compositi a fibre corte quando la lunghezza delle fibre è interna al campo in cui le proprietà fisico-meccaniche del composito variano con la lunghezza delle fibre stesse.

La maggioranza dei compositi a fibra corta sono basati sulla matrice polimerica. Le plastiche rinforzate con fibre discontinue attraggono l’attenzione dei progettisti per la versatilità di proprietà e applicazioni, ma anche per il basso costo di fabbricazione.

L’orientazione delle fibre dipende soprattutto dal tipo di processo di produzione adottato e può variare da essere completamente casuale (random) ad essere parzialmente allineate in un piano (condizione che si ottiene per esempio, quando il composito è prodotto per estrusione o procedimenti simili come l’iniezione, che determinano un orientamento delle fibre nella direzione del flusso).

(51)

Il materiale con cui è costruito il corpo pompa oggetto della trattazione, è un COMPOSITO PLASTICO a fibra corta.

La matrice: PLASTICA (POLIPROPILENE OMOPOLIMERO). La fibra: FIBRA DI VETRO.

3.3 Matrice

3.3 Matrice

3.3 Matrice

3.3 Matrice

In un materiale composito la matrice svolge tre ruoli fondamentali: mantiene unite le fibre, distribuisce il carico e le protegge dall’ambiente esterno. Il materiale ideale per una matrice è un liquido a bassa viscosità che può essere trasformato in un solido resistente, fortemente ancorato alle fibre di rinforzo. La matrice ideale deve avere buona resistenza a trazione, elevato modulo elastico, resistenza a taglio, resistenza a frattura e ad impatto; deve resistere a degrado termico e a creep alla temperatura d’esercizio. Il legame con le fibre, o con l’agente d’accoppiamento, deve essere forte.

Deve resistere al degrado da parte d’umidità, agenti chimici e solventi; deve presentare basso ritiro durante la polimerizzazione.

Sono auspicabili un lungo tempo di conservazione, basso peso specifico e basso costo.

Nel caso specifico la matrice è una RESINA TERMOPLASTICA.

(52)

ottenere in maniera estremamente semplice e veloce strutture anche complesse mediante macchine per stampaggio ad iniezione o estrusione.

Questi materiali sono particolarmente adatti per processi automatici. Non

richiedono ciclo di curing; il materiale è riscaldato, formato e lasciato raffreddare. Le caratteristiche di una termoplastica non rinforzata non sono in ogni caso tali da

permettere l’uso di questo materiale come materiale strutturale e un certo miglioramento si ottiene realizzando compositi con matrici termoplastiche.

Tipicamente i termoplastici sono utilizzati con fibre corte e non con fibre lunghe e anche per questo motivo la loro resistenza è più bassa.

Tipiche resine termoplastiche sono le poliammidi, i policarbonati e i polisolfati, che sono rinforzate con fibre corte (1-25 mm) di vetro o di carbonio. In questi materiali il contenuto di fibre è relativamente basso (inferiore al 40% in volume) a causa delle difficoltà che altrimenti sarebbero connesse con lavorazioni di stampaggio e iniezione. In particolare le fibre tendono a rompersi durante questi processi e sono abrasive per le attrezzature.

La resina termoplastica costituente il composito con cui è realizzato il corpo pompa, attraverso un processo di stampaggio, è il polipropilene (PP) che fa parte della famiglia delle resine poliolefiniche.

Fig. 3.2-Formula

chimica del Polipropilene Omopolimero

(53)

 Tecnologia di trasformazione: Il polipropilene può essere facilmente stampato per iniezione, per stampaggio, per soffiaggio, per termoformatura sotto vuoto. Per estrusione si possono ottenere film, filati, barre, tubi, lastre, ecc. Per alcuni tipi speciali è possibile anche la metalizzazione.

 Qualità particolari: Basso peso specifico, prezzo interessante, buone caratteristiche meccaniche, termiche ed elettriche, ottima resistenza chimica, elevata resilienza specie per i tipi copolimerizzati con etilene. Tipi speciali: resistenti agli UV, alla fiamma, per usi alimentari, per metallizzazione, con cariche speciali.

 Limiti d’impiego: Fragilità alle basse temperature, debole resistenza all’invecchiamento, ritiro allo stampaggio irregolare, particolare cura nello stampaggio di pezzi con inserti e prigionieri, possibile decomposizione per contatto ad alta temperatura con metalli tipo: manganese, cobalto, nickel, ecc. incollaggio difficile.

 Settori d’impiego: Pezzi industriali, componenti elettrici ed elettronici, apparecchiature chimiche, corpi cavi, tubi, particolari resistenti all’acqua calda, articoli da cucina, contenitori vari, giocattoli, industria tessile e automobilistica, arredamento, edilizia, nastri per imballaggio, cancelleria, aviazione, film termoretraibili.

(54)

Tab. 3.3-Proprietà fisico-meccaniche della matrice polimerica Polipropilene. TIPI DI POLIMERI POLIPROPILENE NORMALE POLIPROPILENE COPOLIMERO POLIPROPILENE CARICATO CON FIBRA DI VETRO UNITA DI MISURA DENSITA’ A 23° C 900-910 890-905 1050-1240 Kg/m 3 ASSORBIMENTO ACQUA (24ORE,23°C,3mm) 0,01-0,03 0,01-0,03 0,01-0,05 % PUNTO DI FUSIONE(RAMMOL.) 165-170 // 160-170 °C RESISTENZA AL CALORE(CONTINUO) 105-125 85-115 130-140 °C COEFFICIENTE DI ESPANSIONE TERMICA LINEARE 5,8-10,2 8-9,5 2,9-5,2 10-3/°C DUREZZA ROCKWELL R80-110 R50-96 R110 // RESISTENZA A TRAZIONE 29-38 20-31 42-100 N/mm 2 ALLUNGAMENTO A ROTTURA 200-700 200-700 2-3,6 % MODULO DI YOUNGS “E” 1000-1550 700-1100 3100-6300 N/mm 2 RESISTENZA ALLA FLESSIONE 42-56 35-49 49-77 N/mm 2 MODULO ELASTICO A FLESSIONE 1200-1800 900-1400 2700-600 N/mm2 RESISTENZA A COMPRESSIONE 39-56 25-50 39-49 N/mm 2 MODULO ELASTICO A COMPRESSIONE 1050-2100 // // N/mm2

INFIAMMABILTA LENTAMENTE BRUCIA LENTAMENTE BRUCIA LENTAMENTE BRUCIA //

TEMPERATURA STAMPAGGIO INIEZIONE 200-280 200-280 200-280 °C TEMPERATURA STAMPI 20-65 20-65 40-80 °C PRESSIONE DI INIEZIONE 80-140 80-140 80-140 N/mm 2 RITIRO 1-2,5 1-2,5 0,2-0,8 %

Figura

Fig. 2.1-Il tubo di Venturi è un tubo con un restringimento: a questo livello l'aria
Fig. 2.3-Immagini di pompe: sopra un
Fig. 2.6-Corpo pompa: vista interna .
Fig. 2.7-Corpo pompa diviso a metà. In rosso sono evidenziate le filettature.
+7

Riferimenti

Documenti correlati

In caso di inottemperanza agli obblighi precisati dal presente articolo, accertata dal Comune o ad esso segnalata da un ente di assistenza o previden- za oppure

In caso di tornei organizzati dalle Associazioni sportive del gioco delle bocce di Pietra Ligure oppure ad eventi organizzati dal Comune di Pietra Ligure, preventivamente comunicate

Il processo di taglio è un processo per asportazione di materiale nel quale un utensile multi- tagliente a geometria definita come una fresa in caso di fresatura, oppure un

In particolare quindi per ogni volo DCtv=1 nei time slot colorati in giallo e nel caso di voli 737 tipo British airways, il valore DCtv=2 poiché sono necessari

Anche in questo caso notiamo come le curve presentino sia una riduzione delle caratteristiche del materiale associate alla temperatura applicata, che un successi- vo innalzamento

Se un corpo rigido ha una retta r di simmetria materiale, allora tutti gli assi ortogonali a r sono principali d’inerzia e quindi anche r `e principale

Intro durre i concetti di sup er cie integrale, direzioni caratteristiche e curve ca-. ratteristiche p er le equazioni quasi-lineari del prim'ordine, ed imp

Nel caso non abeliano dobbiamo avere un elemento di ordine 3, quindi della