• Non ci sono risultati.

(1)Problem 11921 (American Mathematical Monthly, Vol.123, June-July 2016) Proposed by C

N/A
N/A
Protected

Academic year: 2021

Condividi "(1)Problem 11921 (American Mathematical Monthly, Vol.123, June-July 2016) Proposed by C"

Copied!
2
0
0

Testo completo

(1)

Problem 11921

(American Mathematical Monthly, Vol.123, June-July 2016) Proposed by C. I. V˘alean (Romania).

Prove

log2(2)

X

k=1

Hk

(k + 1)2k+1 + log(2)

X

k=1

Hk

(k + 1)22k +

X

k=1

Hk

(k + 1)32k = ζ(4) + log4(2) 4 whereHk =Pk

j=11/j.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. Since

[zk+1] log2(1 − z) = [zk+1]

−

X

j=1

zj j

2

=

k

X

j=1

1

j(k + 1 − j)= 1 k + 1

k

X

j=1

 1

j + 1

k + 1 − j



= 2Hk

k + 1, we have that for 0 < z < 1,P

k=1 Hkzk+1

k+1 = 12log2(1 − z). Then it suffices to show log(2)

X

k=1

Hk

(k + 1)22k +

X

k=1

Hk

(k + 1)32k =ζ(4) − log4(2)

4 . (1)

Now, for 0 < z ≤ 1, F (z) :=1 2

Z z 0

log2(1 − t)

t dt =

X

k=1

Hkzk+1 (k + 1)2, and

Z z 0

F (t) t dt =

X

k=1

Hkzk+1 (k + 1)3, and, by integrating by parts,

X

k=1

Hkzk+1 (k + 1)3 =

Z z 0

F (t) d(log(t)) = [F (t) log(t)]z0+− Z z

0

F(t) log(t) dt

= log(z)

X

k=1

Hkzk+1 (k + 1)2 −1

2 Z z

0

log(t) log2(1 − t)

t dt.

Therefore, for 0 < z ≤ 1,

−2 log(z)

X

k=1

Hkzk+1 (k + 1)2 + 2

X

k=1

Hkzk+1 (k + 1)3 = −

Z z 0

log(t) log2(1 − t)

t dt (2)

and, by letting z =12, we have that (1) is equivalent to

− Z 12

0

log(t) log2(1 − t)

t dt = ζ(4) − log4(2)

4 . (3)

We notice that Z 12

0

log(t) log2(1 − t)

t dt = 1

2 Z 12

0

log2(1 − t) d(log2(t))

= 1

2log2(1 − t) log2(t)12

0++ Z 12

0

log(1 − t) log2(t) 1 − t dt

= log4(2)

2 +

Z 1

1 2

log(t) log2(1 − t)

t dt.

(2)

Hence, by using (2) for z = 1, we get

− Z 12

0

log(t) log2(1 − t)

t dt = −1

2 Z 12

0

log(t) log2(1 − t)

t dt −1

2

log4(2)

2 +

Z 1

1 2

log(t) log2(1 − t)

t dt

!

= −log4(2)

4 −1

2 Z 1

0

log(t) log2(1 − t)

t dt

= −log4(2)

4 +

X

k=1

Hk

(k + 1)3 = ζ(4) − log4(2) 4 and the proof of (3) is complete because P

k=1 Hk

(k+1)3 = ζ(3, 1) = ζ(4)/4 which is a known result (see for example Special Values of Multidimensional Polylogarithms, Trans. Amer. Math. Soc. 353, 907-941, 2001 by Borwein, Bradley, Broadhurst, and Lisonek). 

Riferimenti