• Non ci sono risultati.

Intermediate Test QUANTITATIVE METHODS for ECONOMIC APPLICATIONS 21/11/2019

N/A
N/A
Protected

Academic year: 2021

Condividi "Intermediate Test QUANTITATIVE METHODS for ECONOMIC APPLICATIONS 21/11/2019"

Copied!
3
0
0

Testo completo

(1)

Intermediate Test QUANTITATIVE METHODS for ECONOMIC APPLICATIONS 21/11/2019

I M 1) Given the polynomial equation B # # B  5 œ !, determine the value of for which5 this equation admits the solution B œ /1%3. Then calculate the square roots of the other solution.

From B œ /1%3 we get B œ cos1 sin1 ; from B  # B  5 œ ! we get:

%  3 % œ ##  3 ## #

B œ # „ #  %5 œ #  %5 #  %5 œ  # Ê 5 œ "

# #

  #  # #

# „ œ # „ 3 # if .

So the second solution of the equation is B# œ #  3 # œcos(  3sin( .

# # % %

  1 1

So B# œcos( 5 #  3sin( 5 # ß !Ÿ5 Ÿ" from which:

) # ) #

1 1 1 1

- œ" cos( sin( and - œ# cos"& sin"& .

)1  3 )1 )1  3 )1

I M 2) Given the matrix  œ determine the value of the parameter such5

" 5 ! 5 "  "

!  " "

 

 

 

 

 

 

that the matrix admits the eigenvalue - œ ! and, for this value of , find one modal matrix5 which diagonalizes .

If the matrix admits the eigenvalue - œ ! surely the matrix is a singolar one, i.e. its determinant

is equal to zero. So       iff .

 

 

 

 

 

 

 œ œ " "  "  5 5  ! œ  5 œ ! 5 œ !

" 5 ! 5 "  "

!  " "

#

So œ - ˆ œ !

" ! !

! "  "

!  " "

 

 

 

 

 

  and so, from   we get:

 

 

 

 

 

" ! !         

! "  "

!  " "

œ " " "  " œ " œ !

     #

-

-

-

- - - - -# -

to get the eigenvalues -" œ !, -# œ " and -$ œ #.

Since the matrix is a symmetric one, the matrix is diagonalizable. Furthermore it has all distinct eigenvalues. To get the corresponding eigenvectors, we must solve three systems.

For -" œ ! we solve:

 

     

     

     

     

     

     

 

 ! †ˆ œ † œ Ê Ê

" ! ! B ! B œ !

! "  " C ! C  D œ !

!  " " D !  C  D œ !

B œ ! C œ D and so eigenvectors corresponding to -" œ ! are •" œ !ß Cß C Ê !ß "ß "   . For -# œ " we solve:

 

     

     

     

     

     

     



 " †ˆ œ † œ Ê

! ! ! B ! a B

! !  " C ! D œ !

!  " ! D ! C œ !

and so eigenvectors corresponding to -# œ " are •# œ Bß !ß ! Ê "ß !ß !   .

(2)

For -$ œ # we solve:

 

     

     

     

     

     

     

 

 # †ˆ œ † œ Ê Ê

 " ! ! B ! B œ !

!  "  " C ! C  D œ !

!  "  " D ! C  D œ !

B œ ! D œ  C and so eigenvectors corresponding to -$ œ # are •$ œ !ß Cß  C Ê !ß "ß  "   .

Since the matrix is a symmetric one, the matrix is diagonalizable by an orthogonal matrix, and so we must transform the three vectors in unit vectors, to get the modal orthogonal matrix which is:

” œ

! " !

!

! 

 

 

 

 

 

 

 

" "

# #

" "

# #

.

I M 3) If in the basis •œ"ß "ß ! à "ß  "ß ! à #ß !ß "     the vector has coordinates—

"ß #ß  ", determine its coordinates in the basis –œ"ß "ß ! à "ß  "ß ! à !ß #ß "    .

If the vector has coordinates — "ß #ß  " in the basis • œ"ß "ß ! à "ß  "ß ! à #ß !ß "     we get: —œ † œ . To determine the coordinates of in the other—

" " # " "

"  " ! #  "

! ! "  "  "

     

     

     

     

     

     

basis – œ"ß "ß ! à "ß  "ß ! à !ß #ß "    , we must solve the system:

           

           

           

           

           

           

" " ! B " B " " ! "

"  " # C  " C "  " #  "

! ! " D  " D ! ! "  "

† œ or calculate œ †

"

. Using the first method we get:

     

     

     

     

     

     

  

  

  

" " ! B " B  C œ " B  C œ " B œ "

"  " # C  " B  C  #D œ  " B  C œ " C œ !

! ! " D  " D œ  " D œ  " D œ  "

† œ Ê Ê Ê .

Using the second method we get: Adj( ) œ .

 "  " !

 " " !

#  #  #

 

 

 

 

 

 

Then adj( )  , and since det  , we finally obtain:

 

 

 

 

 

 

T œ  œ  #

 "  " #

 " "  #

! !  #

"

" " " "

# # # #

" " " "

# # # #

œ œ † œ

 "  "

 "  "

! ! " ! ! "

B " "

C  " !

D  "  "

         

         

         

         

         

  and so we get        .

I M 4) Given a linear map 0 À‘$ Ä‘$, ˜œ —† , determine the matrix knowing that such linear map satisfies these three conditions:

a) 0 "ß #ß " œ "ß $ß $ à    b) "ß "ß ! − Ker 0 à

c) "ß "ß " is an eigenvector of corresponding to the eigenvalue  -œ ". From the first condition we get:

     

     

     

     

     

     



+ + + " " +  #+  + œ "

+ + + # $ +  #+  + œ $

+ + + " $ +  #+  + œ $

† œ Ê

"" "# "$ "" "# "$

#" ## #$ #" ## $

$" $# $$ $" $# $$

2 ;

from the second condition we get:

(3)

     

     

     

     

     

     



+ + + " ! +  + œ !

+ + + " ! +  + œ !

+ + + ! ! +  + œ !

† œ Ê

"" "# "$ "" "#

#" ## #$ #" ##

$" $# $$ $" $#

; from the third condition we get:

     

     

     

     

     

     



+ + + " " +  +  + œ "

+ + + " " +  +  + œ "

+ + + +  +  + œ "

† œ Ê

"" "# "$ "" "# "$

#" ## #$ #" ## #$

$" $# $$ 1 1 $" $# $$

. We have so obtained three systems:

 

 

 

+  #+  + œ " + œ !

+  + œ ! + œ !

+  +  + œ " + œ "

Ê

"" "# "$ ""

"" "# "#

"" "# "$ "$

 

 

 

+  #+  + œ $ + œ  #

+  + œ ! + œ #

+  +  + œ " + œ "

Ê

#" ## #$ #"

#" ## ##

#" ## #$ #$

 

 

 

+  #+  + œ $ + œ  #

+  + œ ! + œ #

+  +  + œ " + œ "

Ê

$" $# $$ $"

$" $# $#

$" $# $$ $$

And finally  œ

! ! "

 # # "

 # # "

 

 

 

 

 

 .

I M 5) Given the linear system , check, depending on the para-



B  #B  #B  B œ "

$B  B  #B œ "

B  $B  7B  5 B œ !

" # $ %

" # %

" # $ %

meters and , the existence and the number of its solutions.7 5

To solve the problem we must apply Rouchè-Capelli theorem to the system, and so we study the Rank of the matrix and the Rank of the Augmented matrix   ˜l .

By elementary operations on the rows V Ã V  $V# # " and V Ã V  V$ $ " we get:

   

   

   

   

   

   

"  # # " l " "  # # " l "

$  " ! # l " ! &  '  " l  #

" $ 7 5 l ! ! & 7  # 5  " l  "

Ä ;

by another elementary operation on the rows V Ã V  V$ $ # we get:

   

   

   

   

   

   

"  # # " l " "  # # " l "

! &  '  " l  # ! &  '  " l  #

! & 7  # 5  " l  " ! ! 7  % 5 l "

Ä .

Using this last matrix we see that:

If 7 œ  % and 5 œ ! it is Rank  œ #  Rank ˜l œ $ and so the system has no solu- tions;

if 7 Á  % or 5 Á ! it is Rank  œ $ œRank ˜l  and so the system has ∞" solutions.

Riferimenti

Documenti correlati

To nalyze the nature of the stationary points of the function we apply first and second order

a To nalyze the nature of the stationary points of the function we apply first and second order

Using Kuhn-Tucker conditions, we form the Lagrangian function:... We apply first

For a complete analysis we form the Lagrangian function only for this con- straint.. For a complete analysis we form the Lagrangian function only for

Firstly we search for two linearly independent eigenvectors corresponding to the eigenvalue -

Being a problem with an inequality constraint we apply the Kuhn-Tucker conditions, find the solutions and then we study the objective function on the frontier

[r]

TASKS Quantitative Methods/Mathematics for Economic