• Non ci sono risultati.

INTERMEDIATE TEST MATHEMATICS for ECONOMIC APPLICATIONS 7/12/2018

N/A
N/A
Protected

Academic year: 2021

Condividi "INTERMEDIATE TEST MATHEMATICS for ECONOMIC APPLICATIONS 7/12/2018"

Copied!
3
0
0

Testo completo

(1)

INTERMEDIATE TEST MATHEMATICS for ECONOMIC APPLICATIONS 7/12/2018

I M 1)         cos sincos sin

cos sin . The two square roots of are:

                  

 

 cos  sin  cos  sin 

  with .

The two roots are:

    

 

cos sin  and

         

 

cos  sin   .

I M 2) The characteristic polynomial of is   

           

   

  

  

 

 

 

 

 

 

 

 

       

   

 

            .

Matrix  has the eingevalues   ,    and   , thus  admits multiple eigenvalues if and only if    or   .

If   , an   is a vector 

 eigenvector associated to the eigenvalue  

 

 

 

 

 

 

satisfying the condition  

     

     

     

     

     

     

    

   

    

   

   

or, in system form:

 

 

 

 

 

 

     

   

      

         

, and so  .

If   , an   is a vector 

 eigenvector associated to the eigenvalue  

 

 

 

 

 

 

satisfying the condition  

     

     

     

     

     

     

    

   

     

   

    

or, in system form:

 

 

 

 

 

 

      

   

     

        

, and so  .

I M 3) From                           we get:

(2)

     

       

       

       

      

      

      

    

 

 

 

 

 

 

 

 

       

       

         

       

  





 

, so the system:

 

 

 

 

 

 

 

      

      

            

         

    

    

 

 

 .

From                             we get:

     

       

       

      

      

      

      

    

 

 

 

 

 

 

 

 

       

       

         

       

  

 





 

. From

  

  

  

  

  

  

  

      

      

           

       

        

        

   

 

we get and so

and and and and

   .

 

   

So we get  

  

  

    

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

The dimension of the Image of the linear map is equal to the Rank of the matrix   while the dimension of its Kernel is equal to   , the difference between the dimen- sion of the domain of the linear map and the Rank of the matrix .

For the Rank of , note that        , thus the matrix has not full rank while the determinant of the sub-matrix   is different from zero.

 

So the Rank of is , the dimension of the Image of is and the dimension of the    Kernel of is . 

I M 4) The three vectors  , and  are linearly dependent if and only if the deter- minant of the matrix   is equal to .

         

 

 

 

 

 

 

     

  

  

   

  

     

  

 

                ; thus the three vectors are linearly dependent if and only if    . For     we get        . From       we get:

  

  

  

                 

                 

                    

  

        

       

         

   

    

    

    

   

 

 





  

 

 

   

 

 



. So, for we get:

                .

(3)

I M 5) Matrices and are similar if         .

   

       

  

                

      .



So                   

            

         

    

 

  .

Riferimenti

Documenti correlati

I M 4) To solve the problem we can apply

[r]

For the second order conditions we use the borde-. red Hessian matrix: ‡

TASKS of MATHEMATICS for Economic Applications AA... Find

a To nalyze the nature of the stationary points of the function we apply first and second order

Furthermore it has all

Using Kuhn-Tucker conditions, we form the Lagrangian function:... We apply first

For a complete analysis we form the Lagrangian function only for this con- straint.. For a complete analysis we form the Lagrangian function only for