• Non ci sono risultati.

Intermediate Test of Mathematics for Economic Applications 02/12/2016

N/A
N/A
Protected

Academic year: 2021

Condividi "Intermediate Test of Mathematics for Economic Applications 02/12/2016"

Copied!
2
0
0

Testo completo

(1)

Intermediate Test of Mathematics for Economic Applications 02/12/2016

I M 1) D œ #3 "*† "  3 "' œ # † 3 †"* "*  # cos 1 sin 1 "'œ

%  3 %

# † 3 † #"* $ )cos %1  3sin %1 œ  # 3#( and D œ # 3#( ; D œ# 3 œ#(

##(#cos 1 sin 1 œ ##(#cos1  sin1  .

1 1

#  3 # %  5  3 %  5 with 5 œ !ß "

We conclude that D œ „ ##(## # œ „ #  

#  3 # "$ "  3 .

I M 2) Since the system is an homogeneus one, it has ∞" solutions if and only if 8 Rank ‚ œ " , where 8 is the number of the unknown variables and ‚ is the matrix of the coefficients. To check the rank we reduce the matrix by elementary operations on its rows:

   

   

   

   

   

   

   

   

   

   

   

   

7 8 " " 7 8 " "

7 8 5 " ! ! 5  " !

7 8 5 2 ! ! ! 2  "

Ä

V  V V  V

# "

$ #

and it is easy to note that Rank ‚ œ $ iff 2 Á " 5 Á ", and at least one from and is different from .7 8 ! I M 3) If  is the matrix associated to the linear map , we know that dim ImmJ   J  is equal to Rank  .

Like the previous exercise we can check Rank  by elementary operations on the lines of :

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

7 " ! ! ! "  75 ! !

" 5 ! ! " 5 ! !

! ! 5 " ! ! 5 "

! ! " 7 ! ! "  75 !

Ä Ä

V  7V V V

V  7V G

" # " #

% $

$ G%

Ä

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

" 5 ! !

! "  75 ! !

! ! " 5

! ! ! "  75

and so we have:

Rank  œdim Imm  œ %

J # 75 Á "

75 œ "

 if

if .

By Sylvester Theorem we know that dim Ker dimImmœdim ‘% œ %; if dimImm is minimumÐ75 œ " Ñ it trivialy follows dimImmœdim Ker œ #. To find a basis for the Kernel remember that belongs to Ker—  J if  —† œ, that in

system form is: . Choosing







 7

Á ! 7 œ "Î5 B  B œ !

B  5B œ ! B œ  5B

5B  B œ ! B œ  5B

B  7B œ !

Ê 5

" #

" # " #

$ % % $

$ %

and ,

every element of Ker J is of the form:

— œ  5B B B ß  5B #ß #ß $ $œ B# 5 " !ß !  B ! ! "ß  5ß ß  $ ß ß . So a basis for Ker J is UKer J œ 5 " !ß ! ß ! ! "ß  5ß ß   ß ß .

For a basis of Imm J remember that belongs to the immage of if ˜ J  —† œ˜, that in system form is:

  

  

  

  

  

  

    

7 "Î5

"Î5

B  B œ C B  B œ C B  5B œ 5C

B  5B œ C B  5B œ C B  5B œ C

5B  B œ C 5B  B œ C 5B  B

B  7B œ C B  B œ C

Ê Ê

" # " " # " " # "

" # # " # # " # #

$ % $ $ % $ $ %

$ % % $ % %

 

œ C C œ 5C

5B  B œ 5C

Ê C œ 5C

$ $ %

$ % %

# "

 .

(2)

Choosing again 5 Á ! and 7 œ "Î5, every element of Imm J is of the form:

˜ œ C C C C "ß #ß $ß % œ C 5C 5C C"ß "ß %ß %œ C " 5 ! !  C ! ! 5 "" ß ß ß  % ß ß ß  and a basis for Imm J is UImm J œ" 5 ! ! ß ! ! 5 "ß ß ß   ß ß ß .

I M 4) Since the matrix # has eigenvectors with two components, thus # is a # ‚ #

square matrix; if # œ B C #

D A

  by the conditions the matrix must satisfy:

# † " œ " † " #† " œ  " † "

" "  "  "

    and    , that in system form is:

 

 

 

 

 

 

 

B B

B " !

C ! "

œ

 C œ " œ ! D  A œ " œ "

 C œ  " D œ "

D  A œ " A œ !

Ê Ê #   .

I M 5) The characteristic polynomial of is:

: œ œ œ

#  "  " "  "  "

" #   " ! #   "

 "  " 5  5   "  " 5 

 

   

   

   

   

   

   

-

- -

- -

- - -

œ "  -# -5 - "  5   - " "  - œ

œ "  - - # 5  $ - $5  # œ ! , so a5 : " œ !:   , and - œ " is an eigen- value of  for every 5. Define ; - œ -# 5  $ - $5  #.

If - œ " is a multiple eigenvalue of  ; " œ %  #5 œ !,   and so 5 œ #.

Since -# &  % œ- - " %  - , t characteristic polynomial is factorized ashe :  - œ - " # % - and the eigenvalues of are  -" œ-# œ " and -$ œ %. Since  is a symmetric matrix, from the Spectral Theorem we know that is a diagona- lizable matrix and so 7 œ # œ 71" +": the geometric multiplicity of - œ " , the dimenti- on of Xf-œ", the eigenspace associated to the eigenvalue - œ ", is equal to , its alge-# braic multiplicity. Solving the homogeneus system  " †ˆ† — œ  we get:



B  B  B œ ! B  B  B œ !

 B  B  B œ !

Ê B œ B  B

" # $

" # $

" # $

$ " #. Every element of Xf-œ" is a vector:

— œ B ß B ß B  B " # " # but for -" œ-# œ " we must find two orthogonal unit vectors.

For B œ "" and B œ !# we get —" œ "ß !ß "  . To get another eigenvector orthogonal

to —" we pose: "ß !ß " † B ß B ß B  B" # " #œ ! and we get:

B  B  B" " # œ !Ê B# œ  #B" and so the eigenvector —# œ B ß "  #B"ß  B". For B œ "" we get —# œ "ß  #ß  " . From —" and —# we get the unit eigenvectors:

" œ#Î#ß !ß#Î#, •# œ'Î'ß 'Î$ß 'Î'.

For -$ œ % the homogeneus system  % †ˆ† —œ Ê

  

 #

 #

 #

#

$  $ B  B  B œ !

B B  B œ !

 B  B B œ !

Ê B œ  B  B Ê B œ  B

B B œ ! B œ B

" # $

" # $

" # $

$ " # $ "

" # # " . Every element of

Xf-œ% is a vector —œ B ß B ß  B " " ". For B œ "" we get —$ œ "ß "ß  "  and the unit eigenvector •# œ$Î$ß$Î$ß $Î$.

The orthogonal requested matrix is ” œ

#Î# 'Î' $Î$

!  'Î$ $Î$

#Î#  'Î'  $Î$

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

   .

Riferimenti

Documenti correlati

TASKS of MATHEMATICS for Economic

[r]

[r]

TASKS of MATHEMATICS for Economic Applications AA... Find

a To nalyze the nature of the stationary points of the function we apply first and second order

Furthermore it has all

Using Kuhn-Tucker conditions, we form the Lagrangian function:... We apply first

For a complete analysis we form the Lagrangian function only for this con- straint.. For a complete analysis we form the Lagrangian function only for