• Non ci sono risultati.

(1)Problem 11730 (American Mathematical Monthly, Vol.120, October 2013) Proposed by Mircea Merca (Romania)

N/A
N/A
Protected

Academic year: 2021

Condividi "(1)Problem 11730 (American Mathematical Monthly, Vol.120, October 2013) Proposed by Mircea Merca (Romania)"

Copied!
1
0
0

Testo completo

(1)

Problem 11730

(American Mathematical Monthly, Vol.120, October 2013)

Proposed by Mircea Merca (Romania).

Let p be the partition function (counting the ways to write n as a sum of positive integers), extended so that p(0) = 1 and p(n) = 0 for n < 0. Prove that

X

k=0 2k

X

j=0

(−1)kp



n −k(3k + 1)

2 − j



= 1.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

We prove by induction that S(n) = 1 for all non-negative integers n, where

S(n) =

X

k=0 2k

X

j=0

(−1)kp



n −k(3k + 1)

2 − j

 .

Now, S(0) = p(0) = 1 and for n ≥ 0

S(n + 1) − S(n) =

X

k=0

2k

X

j=0

(−1)kp



n + 1 −k(3k + 1)

2 − j



2k

X

j=0

(−1)kp



n −k(3k + 1)

2 − j



=

X

k=0

2k−1

X

j=−1

(−1)kp



n −k(3k + 1)

2 − j



2k

X

j=0

(−1)kp



n −k(3k + 1)

2 − j



=

X

k=0

 (−1)kp



n −k(3k + 1)

2 + 1



− (−1)kp



n −k(3k + 1) 2 − 2k



=

X

k=0

(−1)kp



n + 1 −k(3k + 1) 2

 +

X

k=0

(−1)k+1p



n −k(3k + 1) 2 − 2k



=

X

k=0

(−1)kp



n + 1 −k(3k + 1) 2

 +

X

k=0

(−1)k+1p



n −k(3k + 5) 2



=

X

k=0

(−1)kp



n + 1 −k(3k + 1) 2



−1

X

i=−∞

(−1)−ip



n −(−i − 1)(3(−i − 1) + 5) 2



=

X

k=0

(−1)kp



n + 1 −k(3k + 1) 2



−1

X

i=−∞

(−1)ip



n + 1 −i(3i + 1) 2



=

X

k=−∞

(−1)kp



n + 1 −k(3k + 1) 2



= [xn+1]f (x) = 0,

where in the last step we used Euler’s pentagonal number theorem

f (x) :=

X

n=−∞

p(n)xn

!

·

X

k=−∞

(−1)kxk(3k+1)2

!

= 1.



Riferimenti