Conclusioni I risultati indicano il permanere di immissioni di composti butilstannici biodisponibili
STUDIO, CARATTERIZZAZIONE E MONITORAGGIO SULLA CONTAMINAZIONE DA COMPOSTI ORGANOSTANNICI: ALTRI PROGETTI
2.4 CARATTERIZZAZIONE CHIMICA DELLA SOSTANZA ORGANICA PARTICELLATA E DISCIOLTA NELLE ACQUE DELLA LAGUNA DI VENEZIA
Tratto da: GIANI M., BERTO D., SAVELLI F., RAMPAZZO F., SPANO, 2006. “Chemical characterization of dissolved and particulated organic matter in the waters of the Venice lagoon” Corila Atti, Research Program 2004-2006.
Introduzione
La distribuzione ed il contributo della materia organica particellata e disciolta nelle acque della laguna di Venezia, giocano un ruolo chiave nei processi che regolano la produzione ed il consumo di carbonio organico. Lo scopo di questo studio è stato quello di determinare la ripartizione fra il carbonio organico disciolto e particellato, quantifi care la frazione di carboidrati e sostanze umiche disciolte e studiare l’origine di alcune frazione della sostanza organica mediante l’utilizzo di rapporti fra gli isotopi stabili del carbonio (Ä13C).
Materiali e metodi
I campionamenti sono stati effettuati in sei stazioni distribuite nella parte settentrionale e centrale del bacino lagunare veneto (Figura 2.4.1) durante 5 crociere, da ottobre 2004 a ottobre 2005.
Nei campioni d’acqua prelevati sono state condotte le analisi di carbonio organico disciolto (Sugimura & Suzuki, 1988), carbonio organico e azoto toale particellati (Nieuwenhiuze et al., 1994), carboidrati disciolti (Burney, Sieburth, 1977) e il rapporto degli isotopi stabili del carbonio Ä13C nel carbonio organico particellato (mediante spettrometro di massa per rapporti isotopici Delta Plus, Thermo Finnigan). Inoltre sono state estratte le sostanze umiche (frazioni umiche e fulviche) disciolte, e g sono stati registrati gli spettri UV-VIS mediante uno spettrofotometro a doppio raggio ATI Unicam UV2 con cuvette in quarzo del cammino ottico di 1 e 5 cm nell’intervallo 200-700 nm.
I rapporti delle assorbanze A272/A407and A465/A665(Fooken & Liebezeit, 2000) sono stati usati per differenziare l’origine ed il grado di condensazione delle sostanze umiche (Schnitzer, 1971).
Risultati
Le concentrazioni più elevate di carbonio organico particellato e disciolto si sono osservate nel sito di S. Giuliano, che è infl uenzato dalle acque dolci e dagli scarichi urbani (DOC: 246±42 µmol L-1, n=5). Valori intermedi si sono osservati nelle stazioni di Marghera, Fusina, Palude della Rosa and Fanerogame, mentre i valori minori nella stazione lagunare Lido (DOC: 150±13 µmol L-1; n=5 ). I valori riscontrati in questa stazione sono comparabili con quelli riportati in bibliografi a per le acque costiere del nord adriatico occidentale (Pettine et al., 1998, Giani et al., 2005).
Le concentrazioni di carbonio organico disciolto nella laguna di Venezia sono generalemente 1,3 volte maggiori rispetto a quelli riportati per le acque costiere del nord Adriatico occidentale (Pettine et al., 1998, Giani et al., 2005).
La distribuzione dei carboidrati disciolti è simile a quella del carbonio organico disciolto, con concentrazioni massime nella stazione di S. Giuliano (39,1±12,9 µmol C L-1, n= 4) e minime nella stazione Lido (23,4±9,8 µmol C L-1, n= 4). Inoltre alte concentrazioni di carboidrati disciolti si sono
osservate nelle stazioni di Palude della Rosa e Fanerogame. Le concentrazioni di carboidrati disciolti osservate sono state in media 3 volte più elevate rispetto a quelle riportate da Pettine e coautori (2001) per le acque costiere del nord adriatico.
Non si sono osservate correlazioni signifi cative del carbonio organico e dei carboidrati disciolti con salinità e clorofi lla-a. Una correlazione signifi cativa tra carbonio organico disciolto nella colonna d’acqua e all’interfaccia acqua sedimento (r2=0.448, p<0.05) (dati non pubblicati) suggerisce che un’elevata percentuale di DOC potrebbe essere imputabile alla risospensione dei sedimenti.
Le massime concentrazioni di carbonio organico particellato si sono osservate nella stazione di S. Giuliano, maggiormente infl uenzata dagli scarichi urbani (POC: 76±11 µmol L-1, n=5). Le stazioni di Marghera, Fusina, Palude della Rosa e Fanerogame hanno presentato valori intermedi, mentre nella stazione di Lido si sono osservati i valori minimi (35±15 µmol L-1, n=5) (Figura 2.4.1), confrontabili con quelli tipici di aree costiere.
La frazione organica del particellato sospeso ha presentato valori del rapporto Ä13C più negativi nelle stazioni di Fusina e Marghera (-24,3±0,4 e -24,3±1,2 %o, rispettivamente), rispetto alle altre stazioni (range di valori medi -22,5- -23,4%o), indicando che una componente maggiore della sostanza organica potrebbe avere origine alloctona.
In Figura 2.4.1 è rappresentata la ripartizione fra la materia organica disciolta e particellata nelle acque lagunari delle stazioni esaminate. Le concentrazioni delle sostanze umiche disciolte nelle acque lagunari sono simili e presentano un’elevata variabilità stagionale con valori compresi tra 31,5±34,9 e 41,5±16,8 µmol C L-1 In bibliografi a è riportato come gli acidi fulvici siano più abbondanti degli umici nelle acque dolci produttive (Yacobi et al., 2003). Il rapporto delle assorbanze a 465 e 665 nm A465/A665 misurato negli acidi umici solubilizzati (Schnitzer, 1971) è inversamente correlato al grado di condensazione delle strutture aromatiche. I rapporti osservati si sono presentati differenti fra acidi umici e fulvici (rispettivamente 4,8 ± 2,5 e 3,4 ± 2,7) dimostrando un alto grado di condensazione delle strutture degli acidi umici e quindi un possibile contributo terrestre alla loro origine.
Conclusioni
Questo studio presenta una prima stima del contributo dei carboidrati e delle sostanze umiche alla materia organica disciolta nella laguna di Venezia.
I più alti apporti terrestri di carbonio organico si sono osservati nelle stazioni di San Giuliano, Marghera e Fusina. Elevati contenuti di carbonio organico nelle stazioni di Marghera e Fusina (dati non pubblicati) probabilmente derivanti da acque di scarico industriali, confermano i dati osservati nelle acque in questo lavoro.
La sostanza organica nella stazione Lido presenta caratteristiche più simili alle acque costiere che a quelle lagunari.
Figura 2.4.1 - Ripartizione fra la materia organica disciolta e particellata nelle acque lagunari delle stazioni esaminate Sono riporatate le concentrazioni medie di carbonio organico disciolto (DOC) e particellato (POC) ed i loro contributi relativi (%) al carbonio organico totale. Inoltre è indicato il contributo dei carboidrati disciolti al DOC.
Bibliografi a
ABALOS M, BAYONA JM, COMPAÑÓ R, GRANADOS M, LEAL C, PRAT MD, 1997. Analytical procedures for the determination of organotin compounds in sediment and biota: a critical review. Journal of Chromatography A 788, 1-49.
ABOUL-KASSIM, T.A.T. AND SIMONEIT, B.R.T., 1995. Petroleum Hydrocarbon Fingerprinting and Sediment Transport Assessed by Molecular Biomarker and Multivariate Statistical Analyses in the Eastern Harbour of Alexandria, Egypt. Mar. Poll. Bull. 30: 63-73. ALBALAT A, POTRYKUS J, PEMPKOWIAK J, PORTE C, 2002. Assessment of organotin pollution along the Polish coast (Baltic sea) by using
mussels and fi sh as sentinel organisms. Chemosphere 47, 165-171.
ALZIEU, C., 1998. Tributyltin: case study of a chronic contaminant in the coastal environment. Ocean Coast. Manag. 40, 23-36. ALZIEU, C., 2000. Impact of tributyltin on marine invertebrates. Ecotoxicology 9, 71–76.
ARNOLD CG, WEIDENHAUPT A, DAVID MM, MULLER SR, HADERLEIN AB, SCHWARZENBACH R, 1997. Aqueous Speciation and 1-Octanol-Water Partitioning of Tributyl- and Triphenyltin: Effect of pH and Ion Composition. Environmental Science and Technology 31, 2596-2602.
ARPAV, 2004. Studio triennale dell’accumulo di composti organostannici nell’ecosistema lagunare di Venezia. Rapporto fi nale -Dipartimento Provinciale di Venezia (http://www.arpa.veneto.it/dapve/docs/rel35_organostannici_laguna.zip).
AXIAK, V., VELLA, A.J., AGIUS, D., BONNICI, P., CASSAR, G., CASSONE, R., CHIRCOP, P., MICALLEF, D., MINTOFF, B., SAMMUT, M., 2000. Evaluation of environmental levels and biological impact of TBT in Malta central Mediterranean. Science Total Environ. 258, 89-97. BARREIRO, R., GONZA´LEZ, R., QUINTELA, M., RUIZ, J.M., 2001. Imposex, organotin bioaccumulation and sterility of female Nassarius
reticulatus in polluted areas of NW Spain. Mar.Ecol. Progr. Ser. 218, 203-212.
BARROSO CM, MOREIRA MH, 2002. Spatial and temporal changes of TBT pollution along the Portuguese coast: ineffi cacy of the EEC directive 89/677. Marine Pollution Bulletin 44, 480-486.
BARROSO CM, MENDO S, MOREIRA MH, 2004. Organotin contamination in the mussel Mytilus galloprovincialis from portuguese coastal waters. Marine Pollution Bulletin 48, 1145-1167.
BARROSO, C.M., MOREIRA, M.H., GIBBS, P.E., 2000. Comparison of imposex and intersexes development in four prosobranch species forTBT monitoring of a southern European estuarine system (Ria de Aveiro, NW Portugal). Mar.Ecol. Progr. Ser. 201, 221-232. BAUMARD, P., BUDZINSKI, H., GARRIGUES, P., 1998. Polyciclic aromatic hydrocarbons in sediments and mussels of the western
Mediterranean sea. Environ. Tox. Chem. 17: 765-776.
BEHYMER, T.D., HITES, R.A., 1988. Photolysis of polycyclic aromatic hydrocarbons adsorbed on fl y ash. Environ. Sci. Technol. 22 : 1311-1319.
BERNARDELLO M., 2009. Studio sulla distribuzione e sull’impatto di inquinanti nell’ambiente marino. Tesi di Dottorato di Ricerca in
Scienze Ambientali. Università Ca’ Foscari di Venezia.
BERTO D, GIANI M, BOSCOLO R, COVELLI S, GIOVANARDI O, MASSIRONI M, GRASSIA L, 2007. Organotins (TBT and DBT) in water, sediments, and gastropods of the southern Venice lagoon (Italy). Marine Pollution Bulletin 55, 425-435.
BINATO, G., BIANCOTTO, G., PIRO, R., ANGELETTI, R., 1998. Atomic absorption spectrometric screening and gas chromatographic–mass spectrometric determination of organotin compounds in marine mussel: an application in samples from the Venetian Lagoon.
Fresenius Journ. Anal. Chem. 361: 333–337.
BORTOLI, A., TRONCON, A., DARIOL, S., PELLIZZATO, F., PAVONI, B., 2003. Butyltins and phenyltins in biota and sediments from the Venice Lagoon. Oceanologia 46: 7-23.
BOSCOLO, R., CACCIATORE, F., BERTO, D., MARIN, M.G., GIANI, M., 2004. Contamination of natural and cultured mussels (Mytilus
galloprovincialis) from Northern Adriatic sea by tributyltin and dibutyltin compounds. Appl. Organ. Chem. 18: 614-618.
BOULOUBASSI, I, MÉJANELLE, L., PETE, R., FILLAUX, J., LORRE, A., POINT, V., 2006. Transport by sinking particles in the open Mediterranean Sea:A 1 year sediment trap study. Mar.Poll. Bull. 52: 560-571.
BRYAN, G.W., BRIGHT, D.A., HUMMERSTONE, L.G., BURT, G.R., 1993.Uptake, tissue distribution and metabolism of 14C-labelled tributyltin(TBT) in the dog-whelk, Nucella lapillus. Journ.Mar. Biol. Assoc. UK 73: 889–912.
BT/TF151 WI CSS99040 - 2007 (Project HORIZONTAL - Draft European Standard - Working Document). Soils, sludges and treated bio-waste - Determination of nonylphenols (NP) and nonylphenol-mono- and diethoxylates - Method by gas chromatography with mass selective detection (GC-MS) http://www.ecn.nl/docs/society/horizontal/BT_TF151_WI_CSS99040_NP_(E)_2862007.pdf BUDZINSKI, H., JONES, I., BELLOCQ, J., PIERRAD, C., GARRIGUES, P., 1997. Evaluation of sediment contamination by polycyclic aromatic
hydrocarbons in the Gironde estuary. Mar. Chem. 58: 85-97.
CACCIATORE, F., 2007. Esperimenti di trapianto di vongole (Tapes philippinarum) in Laguna di Venezia: contaminazione chimica e condizioni fi siologiche (in italian). Thesis, Universita` degli Studi di Padova, 131 pp.
CARICCHIA A.M, CHIAVARINI S., CREMISINI C., FANTINI M, MORABITO R., 1992. Science of the Total Environment 121, 133-144. CARICCHIA A.M, CHIAVARINI S., CREMISINI C., MORABITO R., SCERBO R., 1991. Analytical Science. 7, 1193-1196.
CARVALHO PN, PINTO LF, BASTOA MCP, VASCONCELOS MSD, 2007. Headspace solid-phase micro-extraction and gas chromatography-ion trap tandem mass spectrometry method for butyltin analysis in sediments: Optimizatchromatography-ion and validatchromatography-ion. Microchemical Journal 87, 147-153.
CEPE Antifouling Working Group, Final Report, EC Project No.96/559/3040/DEB/E2, 1999.
CHIAVARINI, S., MASSANISSO, P., NICOLAI, P., NOBILI, C., MORABITO, R., 2003. Butyltins concentration levels and imposex occurrence in snails from the Sicilian coasts (Italy). Chemosphere 50: 311–319.
CICERO, A.M., NONNIS, A., ROMANO, E., FINOIA, M.G., BERGAMIN, L., GRAZIOSI, M., BALOCCHI, C., FOCARDI, S., 2004. Detection of tributyltin (TBT) residues in Italian marine sediments. Chem. Ecol. 20: S319–S321.
DE LA CALLE-GUNTIÑAS MB, SCERBO R, CHIAVARINI S, QUEUVAVILLER PH, MORABITO R, 1997. Comparison of derivatization methods for the determination of butyl- and phenyl-tin compounds in mussels by gas chromatograhy. Applied Organometallic Chemistry 11, 693-702. Decisione n. 2455/2001/CE del Parlamento Europeo e del Consiglio del 20.11.2001, relativa all’istituzione di un elenco di sostanze
prioritarie in materia di acque e che modifi ca la direttiva 2000/60/CE. GU L 331 del 15.12.2001, pag.1.
DIEZ S, LACORTE S, VIANA P, BARCELO D, BAYONA JM, 2005. Survey of organotin compounds in rivers and coastal environments in Portugal 1999-2000. Environmental Pollution 136, 525-536. doi:10.1016/j.envpol.2004.12.011.
DIEZ, S.M., ABALOS, M., BAYONA, J.M., 2002. Organotin contamination in sediments from the Western Mediterranean enclosures following 10 years of TBT regulation. Water Res. 36, 905-918.
DOWSON PH, BUBB JM, LESTER JN, 1992. Organotin distribution in sediments and waters of selected east coast estuaries in the UK.
Marine Pollution Bulletin 24, 492-498.
DOWSON PH, BUBB JM, LESTER JN, 1996. Persistence and Degradation Pathways of Tributyltin in Freshwater and Estuarine Sediments.
Estuarine, Coastal and Shelf Science 42, 551-562.
EVANS SM, 1999. Tributyltin pollution: the catastrophe that never happened. Marine Pollution Bulletin 38, 629-636. FENT, K., 1996. Ecotoxicology of organotin compounds. Critical Rev. Tox. 26: 1-117.
FERRARA F., FABIETTI F., DELISE M., PICCIOLI BOCCA A., FUNARI E., 2001. Alkylphenolic compounds in edible molluscs of the Adriatic Sea (Italy). Environ. Sci. Technol. 35, 3109-3112.
FOOKEN U.& LIEBEZEIT G., 2000. Distinction of marine and terrestrial origin of humic acids in North Sea surface sediments by absorption spectroscopy. Mar. Geol., 164: 173-181.
FOWLER, S.W., KNAUER, G.A., 1986. Role of large particles in the transport of elements and organic compounds through the oceanic water column. Progress Oceanogr. 16: 147-194.
FRIGNANI, M., SORGENTE, D., LANGONE, L., ALBERTAZZI, S., RAVAIOLI, M., 2004. Behaviour of Chernobyl radiocesium in sediments of the Adriatic sea off the Po River delta and the Emilia-Romagna coast. J.Environ. Radioact. 71, 299-312.
GALLINA A, MAGNO F, TALLANDINI L, PASSALER T, CARAVALLO GU, PASTORE P, 2000. Simple and effective gas chromatographic mass spectrometric procedure for the speciation analysis of organotin compounds in specimens of marine mussels. An evaluation of the organotin pollution of the Lagoon of Venice. Rapid Communications in Mass Spectrometry 14, 373-378.
GARAVENTA F, CENTANNI E, PELLIZZATO F, FAIMALI M, TERLIZZI A, PAVONI B, 2007. Imposex and accumulation of organotin compounds in populations of Hexaplex trunculus (Gastropoda, Muricidae) from the Lagoon of Venice (Italy) and Istrian Coast (Croatia). Marine
Pollution Bulletin 54, 615-622.
GIANI M., SAVELLI F., BERTO D., ZANGRANDO V., ÑOSOVIÑ B. & VOJVODIÑ V., 2005. Temporal dynamic of dissolved and particulate organic carbon in the northern Adriatic Sea in relation to the mucilage events. Sci. Tot. Environ., 353, 126-138.
GIBBS, P.E., BRYAN, G.W., PASCOE, P.L., BURT, G.R., 1987. The use of the dog-whelk, Nucella lapillus, as an indicator of tributyltin (TBT) contamination. J. Mar. Biol. Assoc. UK 67: 507–523.
GIBSON CP, WILSON SP, 2003. Imposex still evident in Eastern Australia 10 years after tributyltin restrictions. Marine Environmental
Research 55, 101-112.
polyaromatic hydrocarbons in Cretan Sea surfi cial sediments. Mar Chem. 68, 265–282.
GOMEZ-ARIZA JL, MORALES E, GIRALDEZ I, 1998. Spatial distribution of butyltin and phenyltin compounds on the Huelva coast (Southwest Spain). Chemosphere 37, 937-950.
GOMEZ-ARIZA JL, SANTOS MM, MORALES E, GIRALDEZ I, SANCHEZ-RODAS D, VIEIRA N, KEMP JF, BOON JP, TEN-HALLERS-TJABBES CC, 2006. Organotin contamination in the Atlantic Ocean off the Iberian Peninsula in relation to shipping. Chemosphere 64, 1100-1108. HASSAN, M.A., JUMA, H.A., 1992. Assessment of tributyltin in marine environment of Bahrain. Mar. Poll. Bull. 24: 408–410. HAWKINS SJ, GIBBS PE, POPE ND, BURT GR, CHESMAN BS, BARY S, PROUD SV, SPENCE SK, SOUTHWARD AJ, LANGSTON WJ, 2002.
Recovery of polluted ecosystems: the case for long-term studies. Marine Environmental Research 54, 215-222.
HEDGES, J.I., STERN, J.H., 1984. Carbon and nitrogen determinations of carbonate-containing solids. Limnol. Ocean. 29: 657-663. HOCH M, 2001. Organotin in the environment - an overview. Appl. Geochem. 16, 719-743.
HONG HH, TAKAHASHI S, MIN BY, TANABE S, 2002. Butyltin residues in blue mussels (Mytilus edulis) and arkshells (Scapharca
broughtonii) collected from Korean coastal waters. Environmental Pollution 117, 475-486.
HSIA MP, LIU SM, 2003. Accumulation of organotin compounds in Pacifi c oysters, Crassostrea gigas, collected from acquaculture sites in Taiwan. The Science of the Total Environment 313, 41-48.
IMO, 2001. (International Maritime Organization) International Convention on the Control of Harmful Anti-fouling Systems on Ships. Adottata il 05/10/2001, entrata in vigore il 17/09/2008. <http://www.imo.org> (visitato il 28/08/08).
ISO 18857-1:2005. Water quality - Determination of selected alkyphenols - Part1: Method for non-fi ltered samples using liquid-liquid extraction and gas chromatography with mass selective detection.
ISOBE T., NISHIYAMA H. NAKASHIMA A., TAKADA H., 2001. Distribution and behaviour of nonylphenol, octylphenol, and nonylphenol monoethoxylate in Tokyo metropolitan area: their association with aquatic particles and sedimentary distributions. Environ Sci
Technol 35, 1041-1049.
JIN X.L., JIANG G.B., HUANG G.L., LIU J.F., ZHOU Q.F., 2004. Determination of 4-tert-octylphenol, 4-nonylphenol and bisphenol A in surface waters from the Haihe River in Tianjin by gas chromatography-mass spectrometry with selected ion monitoring,
Chemosphere, 56,1113–1119.
KURIHARA R, SHIRAISHI F, RAJENDRAN RB, TAO H, HORIGUCHI F, NAKATA K, HASHIMOTO S, 2007. Evaluation of ecotoxicity and fate of methylated butyltins in sediments and seawater from Tokyo Bay, Japan. Environmental Toxicology and Chemistry 26, 2560-2566. LANGSTON WJ, POPE ND, 1995. Determinants of TBT adsorption and desorption in estuarine sediments. Marine Pollution Bulletin
31, 32-43.
LAUGHLIN, R.B., LINDEN, O., 1985. Fate and effects of organotin compounds. Ambio 2: 88-94.
LIPIATOU, E., SALIOT, A., 1991. Hydrocarbon contamination of the Rhone delta and the open western Mediterranean. Mar.Poll.Bull. 22, 297-304.
LIU R., ZHOU J.L., WILDING A., 2004. Simultaneous determination of endocrine disrupting phenolic compounds and steroids in water by solid-phase extraction–gas chromatography–mass spectrometry. J Chromatogr A, 1022, 179-189.
MARSILI, L., CARUSO, A., FOSSI, C., ZANARDELLI, M., POLITI, E., FOCARDI, S., 2001. Polycyclic aromatic hydrocarbons (PAHs) in subcutaneous biopsies of Mediterranean cetaceans.Chemosphere 44: 147-154.
MASTRAL, A.M., CALLÉN, M.S., LÓPEZ, J.M., MURILLO, R., GARCÍA, T., NAVARRO, M.V., 2003. Critical review on atmospheric PAH. Assesment of reported data in the Mediterranean basin. Fuel Process. Technol. 80: 183-193.
MAY MING LAU, M., 1991. Tributyltin antifouling: a threat to the Hong Kong marine environment. Archiv. Mar. Contamin. Toxicol. 20 229-235.
MCALLISTER, B.G., KIME, D.E., 2003. Early life exposure to environmental levels of the aromatase inhibitor tributyltin causes masculinisation and irreversible sperm damage in zebrafi sh (Danio rerio). Aquatic Toxicol. 65: 309–316.
MEADOR, J.P., 1997. Comparative toxicokinetics of tributyltin in fi ve marine species and utility in predicting bioaccumulation and acute toxicity. Aquatic Toxicol. 37: 307–326.
MICHEL P, AVERTY B, 1999. Distribution and Fate of Tributyltin in Surface and Deep Waters of the Northwestern Mediterranean.
Environmental Science and Technology 33, 2524-2528.
MILIVOJEVICˇ NEMANICˇ T, LESKOVSEK H, HORVAT M, VRISER B, BOLJE A, 2002. Organotin compounds in the marine environment of the Bay of Piran, Northern Adriatic Sea. Journal of Environmental Monitoring 4, 426-430.
MILIVOJEVICˇ NEMANICˇ T, MILACˇICˇ R, ŠCˇANCˇAR J, 2008. A Survey of Organotin Compounds in the Northern Adriatic Sea. Water, Air
and Soil Pollution. DOI: 10.1007/s11270-008-9770-4.
MORABITO R, CHIAVARINI S, CREMISINI C, 1995. Speciation of organotin compounds in environmental samples by GC-MS. In: Quevauviller, Maier, Griepink (Eds.), Quality Assurance for Environmental Analysis, cap. 17, 435-464. Elsevier, Amsterdam. MORCILLO Y, ALBALAT A, PORTE C, 1999. Mussels as sentinels of organotin pollution: bioaccumulation and effects on P450-mediated
aromatase activity. Environmental Toxicology and Chemistry 18, 1203-1208.
MORCILLO Y, PORTE C, 1998. Monitoring of organotin compounds and their effects in marine molluscs. Trends in Analytical Chemistry 17, 109-116.
NIEUWENHUIZE J., MAAS E.M. & MIDDELBURG J.J., 1994. Rapid analysis of organic carbon and nitrogen in particulate materials. Mar.
Chem., 45: 217-224.
OSPAR, 2004 - OSPAR/ICES Workshop on the evaluation and update of background reference concentrations (B/RCs) and ecotoxicological assessment criteria (EACs) and how these assessment tools should be used in assessing contaminants in water, sediment and biota - The Hague, 2004. Final Report ISBN 1-904426-52-2. (http://www.ospar.org/).
PAGE, D.S., OZBAL, C.C., LANPHEAR, M.E., 1996. Concentration of butyltin species in sediments associated with shipyard activities.
Environ. Pollut., 237-243.
PAGE DS, WIDDOWS J, 1991. Temporal and spatial variation in levels of alkyltins in mussel tissues: a ecotoxicological interpretation of fi eld data. Marine Environmental Research 32, 13-129.
PANNIER F, ASTRUC A, ASTRUC M, MORABITO R, 1996. Determination of Butyltin Compounds in Mussel Samples: A Comparative Study of Analytical Procedures. Applied Organometallic Chemistry 10, 471-476.
compounds (TBT and its metabolites) in Nassarius nitidus from the Lagoon of Venice. Marine Pollution Bulletin 55, 505-511. PAVONI, B., MECOZZI, M., BERTO, D., AUSILI, A., ROMANO, E., AMICI, M., ZHAROVA, N., AMATO, E., 2001. Environmental pollutants
and organic carbon content in sediments from an area of the Moroccan Mediterranean coast. Toxicol. Environ. Chem. 84, 53-67. PELLIZZATO F, CENTANNI E, MARIN MG, MOSCHINO V, PAVONI B, 2004. Concentrations of organotin compounds and imposex in the
gastropod Hexaplex trunculus from the Lagoon of Venice. Science of the Total Environment 332, 89-100.
PETTINE M., PATROLECCO L., CAMUSSO M. & CRESCENZIO, S. 1998. Transport of carbon and nitrogen to the Northern Adriatic Sea by the River Po. Estuar. Coast. Shelf Sc. 46: 127-142.
RAOUX, C., BAYONA, J.M., MIQUEL, J.C., TEYSSIE, J.L., FOWLER, S.W, LABAIÉS, J., 1999. Particulate fl uxes of aliphatic and aromatic hydrocarbons in near shore waters to the north-western Mediterranean Sea, and the effect of continental runoff. Estuar. Coast. Shelf
Sci. 48: 605-616.
RATO M, GASPAR MB, TAKAHASHI S, YANO S, TANABE S, BARROSO C, 2008. Inshore/offshore gradients of imposex and organotin contamination in Nassarius reticulatus (L.) along the Portuguese coast. Marine Pollution Bulletin 56, 1323-1331.
RIVARO P, FRACHE R, 2000. Extraction of butyltins from sediments and their determination by liquid chromatography interfaced to inductively coupled plasma atomic emission detector. Annali di Chimica 90, 299-306.
RÜDEL H, LEPPER P, STEINHANSES J, SCHRÖTER-KERMANI C, 2003. Retrospective monitoring of organotin compounds in marine biota from 1985 to 1999: results from the German environmental specimen bank. Environmental Science and Technology 37, 1731-1738. SANTOS, M.M., VIEIRA, N., REIS-HENRIQUES, M.A., SANTOS, A.M., GOMEZ- ARIZAD, J.L., GIRALDEZ, I., TEN HALLERS-TJABBES, C.C.,
2004. Imposex and butyltin contamination off the Oporto Coast (NW Portugal): a possible effect of the discharge of dredged material. Environ. Internat. 30: 793-798.
ŠCˇANCˇAR J, ZULIANI T, TURK T, MILACˇICˇ R, 2007. Organotin compounds and selected metals in the marine environment of Northern Adriatic Sea. Environmental Monitoring and Assessment 127, 271–282.
SCHNITZER M. ,1971. Characterization of humic constituents by spectroscopy. In Soil Biochemistry, Vol. 2 (McLaren A.D. & Skujins J., eds). Marcel Decker, New York, pp. 60–95.
SCHULTE-OEHLMANN, U., TILLMANN, M., MARKERT, B., OEHLMANN, J., WATERMANN, B., SCHERF, S., 2000. Effects of endocrine disruptors on prosobranch snails (Mollusca: Gastropoda) in the Laboratory. Part II: triphenyltin as a xenoandrogen. Ecotoxicology 9:, 399-412. SHIM, W.J., HONG, S.H., YIM, U.H., KIM, N.S., OH, J.R., 2002. Horizontal and vertical distribution of butyltin compounds in
sediments from shipyards in Korea. Archives Environmental Contamination Toxicology 43 : 277-283.
SHIMASAKI, Y., KITANO, T., OSHIMA, Y., INOUE, S., IMADA, N., HONJO, T., 2003. Tributyltin causes masculinization in fi sh. Environ.
Toxicol. Chem.22: 141-144.
SICRE, M.A., MARTY, J.C., SALIOT, A., APARICIO, X., GRIMALT, J., ALBAIGES, J., 1987. Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: occurrence and origin. Atmosph. Environ. 21: 2247-2259.
SMEDES F, DE JONG AS, DAVIES IM, 2000. Determination of (mono-, di- and) tributyltin in sediments. Analytical methods. Journal of
Environmental Monitoring 2, 541-549.
STEWART, C., DE MORA, S.J., 1990. A review of the degradation of tri (n-butyl) tin in the marine environment. Environ. Technol. 11, 565-570.
STRAND J, 2003. Ph.D. thesis. Coupling marine monitoring and risk assessment by integrating exposure, bioaccumulation and effect studies. A case study using the contamination of organotin compounds in the Danish marine environment. National Environmental Research Institute and Roskilde University, Denmark. (Disponibile all’indirizzo: http://hdl.handle.net/1800/571).
STRAND J, JACOBSEN JA, 2005. Accumulation and trophic tranfer of organotins in a marine food web from the Danish coastal waters.
The Science of the Total Environment 350, 71-85.
STRAND J, JACOBSEN JA, PEDERSEN B, GRANMO Å, 2003. Butytin compounds in sediment and molluscs from the shipping strait between Denmark and Sweden. Environmental Pollution 124, 7-15.
SUGIMIRA Y., SUZUKY Y., 1988. A high-temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample. Mar. Chem., 24, 105-131.
TALLMARK, B., 1980. Population dynamics of Nassarius reticulatus (Gastropoda, Prosobranchia) in Gullmar Fjord, Sweden. Mar. Ecol.
Progr. Ser. 3, 51-62.
TANABE S, 1999. Butyltin Contamination in Marine Mammals - A Review. Marine Pollution Bulletin 39, 62-72.
TEN HALLERS-TJABBES CC, WEGENER JW, VAN HATTUM B, KEMP JF, TEN HALLERS E, REITSEMA TJ, BOON JP, 2003. Imposex and organotin concentrations in Buccinum undatum and Neptunea antiqua from the North Sea: relationship to shipping density and