• Non ci sono risultati.

Parametri ABCD di linee particolari

Nel documento Sviluppo di un qubit a stati di flusso (pagine 131-137)

Figura B.2: Possibili connessioni di due elementi. (a) parallelo: somma delle matrici Y; (b) serie: somma delle matrici Z; (c) cascata: prodotto delle matrici ABCD

Alle volte, per degli elementi connessi a cascata si preferisce calcolare i pa- rametri di scattering S avendo a disposizione quelli di scattering per i singoli elementi della rete. Non `e difficile provare che, nel caso in cui l’impedenza di carico in uscita ad E0 sia stata la stessa di quella di carico in ingresso ad E00durante la determinazione dei parametri S, la matrice di scattering dei due elementi in cascata ´e:  S11 S12 S21 S22  =  S0 11+ kS120 S210 S1100 kS120 S1200 kS0 21S2100 S2200 + kS1200S2100S220  dove k = 1 1 − S220 S1100

B.5

Parametri ABCD di linee particolari

In fig B.3 sono riportati i parametri ABCD per alcune linee di trasmissione. Il semplice elemento di trasmissione del segnale (fig B.3(e)) viene descrit- to in termini dell’impedenza caratteristica della linea Zc e della costante di

propagazione γ. Se consideriamo una linea di trasmissione la cui resistenza, induttanza, capacit`a verso massa e conduttanza verso massa possono essere considerate uniformemente distribuite lungo tutta la linea (ed indicate ripettri- vamente R, L, C, G per unit`a di lunghezza), dall’equazione dei telegrafisti si ha che Zc= s R + jωL G + jωC γ =p(R + jωL)(G + jωC) = α + jβ

La costante di propagazione γ `e un numero complesso. La parte reale α indica di quanto si attenua il segnale per ogni metro, ed `e chiamata costante di attenuazione; la sua unit`a di misura `e il Neper/metro ma viene spesso convertita in dB/metro tramite la seguente

α(dB/m) = (20 log10e)α ' 8.686α

La parte immaginaria β indica di quanto ruota la fase del segnale per ogni metro, si misura in radianti/metro ed `e chiamata costante di rotazione.

Bibliografia

[1] Michael A.Nielsen and Isaac L.Chuang. Quantum computation and quantum information. Cambridge University Press, 2000.

[2] W.K.Wootters and W.H.Zurek. A single quantum cannot be cloned. Nature, 299:802, October 1982.

[3] Peter W.Shor. Polynomial-time algorithms for prime factorization and di- screte logarithms on a quantum computer. arXiv:quant-ph/9508027 v2, January 1996.

[4] Simon Singh. Codici & segreti. BUR - saggi, 2001.

[5] David P.DiVincenzo. The physical implementation of quantum computation. arXiv:quant-ph/0002077 v3, April 2000.

[6] John Preskill. Reliable quantum computers. arXiv:quant-ph/9705031 v3, August 1997.

[7] Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. Topological quantum memory. arXiv:quant-ph/0110143 v1, October 2001. [8] B.E.Kane. A silicon-based nuclear spin quantum computer. Nature,

393:133, May 1998.

[9] J.A.Gupta, R.Knobel, N.Samarth, and D.D.Awschalom. Ultrafast manipulation of electron spin coherence. Science, 292:2458, June 2001. [10] T.Calarco, E.A.Hinds, D.Kaksch, J.Schmiedmayer, J.I.Cirac, and P.Zoller.

Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps. Physical review A, 61:022304, 2000.

[11] C.Monroe. Quantum information processing with atoms and photons. Nature, 416:238, March 2002.

[12] S.Chu. Cold atoms and quantum control. Nature, 416:206, March 2002. [13] J.I.Cirac and P.Zoller. Quantum computations with cold trapped ions.

Physical review letters, 74(20):4091, May 1995.

[14] C.Monroe, D.M.Meekhof, B.E.King, W.M.Itano, and D.J.Wineland. De- monstration of a fundamental quantum logic gate. Physical review letters, 75(25):4714, December 1995.

[15] H.C.Nagerl, D.Leibfried, H.Rohde, G.Thalhammer, J.Eschner, F.Schmidt- Kaler, and R.Blatt. Laser addressing of individual ions in a linear ion trap. Physical review A, 60(1):145, July 1999.

[16] C.A.Sackett, D.Kielpinski, B.E.King, C.Langer, V.Meyer, C.J.Myatt, M.Rowe, Q.A.Turchette, W.M.Itano, D.J.Wineland, and C.Monroe. Ex- perimental entanglement of four particles. Nature, 404:256, March 2000.

[17] D.Kielpinski, C.Monroe, and D.J.Wienland. Architecture for a large-scale ion-trap quantum computer. Nature, 417:709, June 2002.

[18] S.Gulde, M.Riebe, G.P.T.Lancaster, C.Becher, J.Eschner, H.Haffner, F.Schmidt-Kaler, I.L.Chuang, and R.Blatt. Implementation of the deutsch- jozsa algorithm on an ion-trap quantum computer. Nature, 421:48, January 2003.

[19] A.Rauschenbeutel, G.Nogues, S.Osnaghi, P.Bertet, M.Brune, J.M. Rai- mond, and S.Haroche. Coherent operation of a tunable quantum phase gate in cavity qed. Physical review letters, 83(24):5166, december 1999. [20] Jiannis Pachos and Herbert Walther. Quantum computation with trapped

ions in an optical cavity. Physical review letters, 89(18):187903, October 2002.

[21] H.Mabuchi and A.C.Doherty. Cavity quantum electrodynamics: coherence in context. Science, 298:1372, November 2002.

[22] A.Walraff, D.I.Schuster, A.Blais, L.Frunzio enad R.-S.Huang, J.Majer, S.Kumar, S.M.Girvin, and R.J.Schoelkopf. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature, 431:162, September 2004.

[23] Shi-Liang Zhu, Z.D.Wang, and Paolo Zanardi. Geometric quantum com- putation and multiqubit entanglement with superconducting qubits inside a cavity. Physical review letters, 94:100502, March 2005.

[24] I.L.Chang, L.M.K.vandersypen, X.Zhou, D.W.Leung, and S.Lloyd. Ex- perimental realization of a quantum algorithm. Nature, 393:143, May 1998.

[25] D.G.Cory, M.D.Price, W.Maas, E.Knill, R.Laflamme, W.H.Zurek, T.F.Havel, and S.S.Somaroo. Experimental quantum error correction. Physical review letters, 81(10):2152, September 2004.

[26] Y.S.Weinstein, M.A.Pravia, E.M.Fortunato, S.Lloyd, and D.G.Cory. Im- plementation of the quantum fourier transform. Physical review letters, 86(9):1889, February 2001.

[27] L.M.K.Vandersypen, M.Steffen, G.Breyta, C.S.Yannoni, M.H.Sherwood, and I.L.Chuang. Experimental realization of shor’s quantum factoring al- gorithm using nuclear magnetic resonance. Nature, 414:883, December 2001.

BIBLIOGRAFIA 135

[28] D.Suter and K.Lim. Scalable architecture for spin-based quantum com- puters with a single type of gate. Physical review A, 65:052309, 2002.

[29] D.Bouwmeester, J.W.Pan, K.Mattle, M.Eibl, H.Weinfurter, and A.Zeilinger. Experimentatal quantum teleportation. Nature, 390:575, December 1997.

[30] J.-W. Pan, D.Bouwmeester, H.Weinfurter, and A.Zeilinger. Experimental entanglement swapping: entangling photons that never interacted. Physical review letters, 80(18):3891, May 1998.

[31] S.Takeuchi. Experimental demonstration of a three-qubit quantum com- putation algorithm using a single photon and linear optics. Physical review A, 62:032301, 2000.

[32] E.Knill, R.Laflamme, and G.J.Milburn. A scheme for efficient quantum computation with linear optics. Nature, 409:46, January 2001.

[33] N.Bhattacharya, H.B.Van linden van den Heuvell, and R.J.C. Spreeuw. Implementation of quantum search algorithm using classical fourier optics. Physical review letters, 88(13):137901, April 2002.

[34] Y.Nakamura, Y.A.Pashkin, and J.S.Tsai. Coherent control of macroscopic quantum states in a single-cooper-pair box. Nature, 398:786, April 1999. [35] J.E.Mooij, T.P.Orlando, L.Levitov, L.Tian, C.H.Van der Wal, and S.Lloyd.

Josephson persistent-current qubit. Science, 285:1036, August 1999. [36] C.H.Van der Wal, A.C.J.Ter Haar, F.K.Wilhelm, R.N.Schouten,

C.J.P.M.Harmans, T.P.Orlando, S.Lloyd, and J.E.Mooij. Quantum super- position of macroscopic persistent-current states. Science, 290:773, October 2000.

[37] John M.Martinis, S.Nam, J.Aumentado, and C.Urbina. Rabi oscillations in a large josephson-junction qubit. Physical review letters, 89(11):117901, September 2002.

[38] D.Vion, A.Aassime, A.Cottet, P.Joyez, H.Pothier, C.Urbina, D.Esteve, and M.H.Devoret. Manipulating the quantum state of an electrical circuit. Science, 296:886, May 2002.

[39] T.Yamamoto, Y.A.Pashkin, O.Astaflev, Y.Nakamura, and J.S.Tsai. De- montration of conditional gate operation using superconducting charge qubits. Nature, 425:941, October 2003.

[40] Yu.A.Pashkin, T.Yamamoto, O.Astafirv, Y.Nakamura, D.V.Averin, and J.S.Tsai. Quantum oscillations in two coupled charge qubit. Nature, 421:823, February 2003.

[41] I.Chiorescu, Y.Nakamura, C.J.P.M.Harmans, and J.E.Mooij. Coherent quantum dynamics of a superconducting flux qubit. Science, 299:1869, March 2003.

[42] J.Claudon, F.Balestro, F.W.J.Hekking, and O.Buisson. Coherent oscilla- tions in a superconducting multilevel quantum system. Physical review letters, 93(18):187003, October 2004.

[43] D.S.Crankshaw, K.Segall, D.Nakada, T.P.Orlando, L.S.Levitov, S.Lloyd, S.O.Valenzuela, N.Markovic, M.Tinkham, and K.K. Berggren. Dc mea- surements of a macroscopic quantum levels in a superconducting qubit structure with a time-ordered meter. Physical review B, 69:144518, 2004. [44] A.Izmalkov, M.Grajcar, E.Il’chev, T.Wagner, H.-G.Meyer, A.Y.Smirnov,

M.H.S.Amin, A.M.Van den Brink, and A.M.Zagosin. Evidence for entan- gled states of two coupled flux qubits. Physical review letters, 93(3):037003, July 2004.

[45] Huizhong Xu, Frederick W.Strauch, S.K.Dutta, Philip R.Johnson, R.C.Ramos, A.J.Berkley, H.Paik, J.R.Anderson, A.J.Dragt, C.J.Lobb, and F.C.Wellstood. Spectroscopy of three-particle entanglement in a macro- scopic superconducting circuit. Physical review letters, 94:027003, January 2005.

[46] R.McDermott, R.W.Simmonds, M.Steffen, K.B.Cooper, K.Cicak, K.D.Osborn, S.Oh, D.P.Pappas, and J.M.Martinis. Simultaneous state measurement of coupled josephson phase qubits. Science, 307:1299, February 2005.

[47] J.B.Majer, F.G.Paauw, A.C.J.ter Haar, C.J.P.M.Harmans, and J.E.Mooij. Spectroscopy on two coupled coupled superconducting flux qubits. Physical review letters, 94:090501, March 2005.

[48] B.D.Josephson. Possible new effects in superconductive tunnelling. Physics letters, 1(7):251, July 1962.

[49] R.P.Feynman, R.B.Leighton, and M.Sands. The Feynman lectures on physics, volume 3. Addison-Wesley, second edition, 1966. chapter 21. [50] I.I.Rabi. Space quantization in a gyranting magnetic field. Physics review,

51:652, April 1937.

[51] F.Chiarello. Tunable flux qubit manipulated by fast pulses: opera- ting requirements, dissipation and decoherence. arXiv:cond-mat/0602646, February 2006.

[52] M.G.Castellano, F.Chiarello, R.Leoni, G.Torrioli, P.Carelli, C.Cosmelli, M.Di Bucchianico, F.Mattioli, S.Poletto, and D.Simeone. A new flux/phase qubit with integrated readout. IEEE transactions on applied superconductivity, 15(2):849, June 2005.

[53] F.Chiarello, P.Carelli, M.G.Castellano, C.Cosmelli, L.Gangemi, R.Leoni, S.Poletto, D.Simeone, and G.Torrioli. Superconducting tunable flux qubit with direct redout scheme. Supercond. Sci. Technol., 18:1370, August 2005. [54] M.G.Castellano, F.Chiarello, R.Leoni, D.Simeone, G.Torrioli, C.Cosmelli, R.Buttiglione, S.Poletto, and P.Carelli. Tracing the characteristics of a flux qubit with a hysteretic dc-superconducting quantum interference device comparator. Journal of applied physics, 94(12):7935, December 2003.

BIBLIOGRAFIA 137

[55] O.V.Lounasmaa. Experimental principles and methods below 1K. Academic press: London and New York, 1974. chapter 3.

[56] Frank Pobell. Matter and methods at low temperatures. Springer-Verlag, 1992. chapter 7.

[57] K.Bladh, D.Gunnarsson, E.Hurfeld, S.Devi, C.Kristoffersson andB.Smalander, S.Pehrson, T.Claeson, and P.Delsing. Comparison of cryogenic filters for use in single electronics experiments. Rev. Sci. Instrum., 74(3):1323, March 2003.

[58] A:B:Zorin. The thermocoax cable as the microwave frequency filter for single electron circuits. Rev. Sci. Instrum., 66(8):4296, August 1995. [59] Akio Fukushima, Akira Sato, Akio Iwasa, Yasuhiro Nakamura, Take-

shi Komatsuzaki, and Yasuhiko Sakamoto. Attenuation of microwave filters for single-electron tunneling experiments. IEEE transactions on instrumentation and measurement, 46(2):289, April 1997.

[60] Jia-Sheng Hong and M.J.Lancaster. Microstrip filters for rf/microwave ap- plications. Wiley series in microwave and optical engineering, 2001. chapter 2.

Nel documento Sviluppo di un qubit a stati di flusso (pagine 131-137)

Documenti correlati