• Non ci sono risultati.

Draft genome sequences of novel Pseudomonas, Flavobacterium, and Sediminibacterium species strains from a freshwater ecosystem

N/A
N/A
Protected

Academic year: 2021

Condividi "Draft genome sequences of novel Pseudomonas, Flavobacterium, and Sediminibacterium species strains from a freshwater ecosystem"

Copied!
3
0
0

Testo completo

(1)

Draft Genome Sequences of Novel Pseudomonas,

Flavobacterium, and Sediminibacterium Species Strains from a

Freshwater Ecosystem

Federica Pinto,aAdrian Tett,aFederica Armanini,aFrancesco Asnicar,aAdriano Boscaini,bEdoardo Pasolli,aMoreno Zolfo,a Claudio Donati,bNico Salmaso,b Nicola Segataa

aCentre for Integrative Biology, University of Trento, Trento, Italy bEdmund Mach Foundation, San Michele all’Adige, Italy

ABSTRACT Freshwater ecosystems represent 0.01% of the water on Earth, but they support 6% of global biodiversity that is still mostly uncharacterized. Here, we de-scribe the genome sequences of three strains belonging to novel species in the

Pseudomonas, Flavobacterium, and Sediminibacterium genera recovered from a water

sample of Lake Garda, Italy.

T

he uncharacterized microbial genetic diversity in natural environments is immense.

Although high-throughput sequencing methods (1) and metagenomics (2) are recovering part of this diversity, ecosystems, such as freshwater habitats, which are estimated to support 6% of global biodiversity, remain poorly characterized (3). It is thus important to continue uncovering and analyzing microbial sequences from these environments.

In this project, we recovered and described three new microbial genomes of organisms inhabiting a pre-Alpine freshwater lake (Lake Garda, Italy). We specifically focused on potential symbionts of cyanobacterial organisms, and the genomic DNA was obtained from a nonaxenic culture of Tychonema bourrellyi (4). Paired-end libraries (Illumina) were prepared and run on the Illumina HiSeq 2500 platform (100-nucleo-tide [nt]-long paired-end reads). Raw reads were assembled using metaSPAdes version 3.10.1 (5) with default parameters, which generated 7,029 contigs larger than 1,000 bp with a total size of 74 Mbp. From this metagenomic assembly, three genomes belong-ing to the Pseudomonas, Flavobacterium, and Sediminibacterium genera were binned using the manually supervised anvi’o protocol based on the abundance and tetranucle-otide frequency distributions (6) and quality controlled by CheckM (7) (100%, 99%, and 99% predicted completeness, respectively, with an indication of contamination only for

Pseudomonas at 0.27% and no strain heterogeneity).

The Pseudomonas sp. strain FEMGT703P genome has 4.41 Mb assembled into 14

contigs, with an N50of 398,350 bp and a GC content of 59.93%. The assembly of the

Flavobacterium sp. strain FEMGT703F genome resulted in 2.98 Mb, with an N50 of

372,530 bp and a GC content of 38.68%. The Sediminibacterium sp. strain FEMGT703S

genome has 3.22 Mb, with an N50of 530,195 bases and a GC content of 35.78%. The

genomes were annotated using Prokka version 1.11 (8), which identified 4,064, 2,649, and 2,877 coding sequences for the Pseudomonas, Flavobacterium, and

Sediminibacte-rium genomes, respectively. High-resolution phylogenetic profiling using PhyloPhlAn

(9) and sequence similarity analysis using pyani (version 0.2.6; option “-m ANIb”) both confirmed that the three genomes belong to new species when using a sequence identity cutoff of 95%.

The discovery of these new three microbial genomes in a nonaxenic T. bourrellyi culture might confirm the establishment of an ecological association between

cyano-Received 4 January 2018 Accepted 5 January

2018 Published 1 February 2018

Citation Pinto F, Tett A, Armanini F, Asnicar F,

Boscaini A, Pasolli E, Zolfo M, Donati C, Salmaso N, Segata N. 2018. Draft genome sequences of novel Pseudomonas, Flavobacterium, and

Sediminibacterium species strains from a

freshwater ecosystem. Genome Announc 6:

e00009-18.https://doi.org/10.1128/genomeA

.00009-18.

Copyright © 2018 Pinto et al. This is an

open-access article distributed under the terms of theCreative Commons Attribution 4.0 International license.

Address correspondence to Nico Salmaso, nico.salmaso@fmach.it, or Nicola Segata, nicola.segata@unitn.it.

PROKARYOTES

crossm

Volume 6 Issue 5 e00009-18 genomea.asm.org 1

on September 13, 2018 by guest

http://mra.asm.org/

Downloaded from

on September 13, 2018 by guest

http://mra.asm.org/

Downloaded from

on September 13, 2018 by guest

http://mra.asm.org/

Downloaded from

(2)

bacteria and heterotrophic microbes (10, 11). However, more investigations are still needed to further characterize the microbial community diversity and interactions in freshwater systems.

Accession number(s). The sequences for this genome project have been

depos-ited in GenBank under the accession no. PGCM00000000 (Pseudomonas sp.

FEMGT703P), PGCN00000000 (Flavobacterium sp. FEMGT703F), and PGCO00000000

(Sediminibacterium sp. FEMGT703S). The versions described in this paper are the first versions, PGCM01000000, PGCN01000000, and PGCO01000000, respectively.

ACKNOWLEDGMENTS

This work was financially supported by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no. 704603 to Federica Pinto and Marie Skłodowska-Curie grant agreement no. 707345 to Edoardo Pasolli and by the European Research Council (ERC-STG project MetaPG) to Nicola Segata.

REFERENCES

1. Hahn AS, Konwar KM, Louca S, Hanson NW, Hallam SJ. 2016. The information science of microbial ecology. Curr Opin Microbiol 31: 209 –216.https://doi.org/10.1016/j.mib.2016.04.014.

2. Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. 2017. Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 35:833– 844.

https://doi.org/10.1038/nbt.3935.

3. Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard AH, Soto D, Stiassny MLJ, Sullivan CA. 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182.https://doi.org/10 .1017/S1464793105006950.

4. Pinto F, Tett A, Armanini F, Asnicar F, Boscaini A, Pasolli E, Zolfo M, Donati C, Salmaso N, Segata N. 2017. Draft genome sequence of the planktic cyanobacterium Tychonema bourrellyi, isolated from alpine len-tic freshwater. Genome Announc 5:e01294-17.https://doi.org/10.1128/ genomeA.01294-17.

5. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. 2017. metaSPAdes: a new versatile metagenomic assembler. Genome Res 27:824 – 834.https://doi .org/10.1101/gr.213959.116.

6. Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, Delmont TO. 2015. Anvi’o: an advanced analysis and visualization platform for ’omics data. PeerJ 3:e1319.https://doi.org/10.7717/peerj.1319. 7. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015.

CheckM: assessing the quality of microbial genomes recovered from iso-lates, single cells, and metagenomes. Genome Res 25:1043–1055.https:// doi.org/10.1101/gr.186072.114.

8. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioin-formatics 30:2068 –2069.https://doi.org/10.1093/bioinformatics/btu153. 9. Segata N, Börnigen D, Morgan XC, Huttenhower C. 2013. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 4:2304.https://doi.org/10.1038/ncomms3304. 10. Alvarenga DO, Fiore MF, Varani AM. 2017. A metagenomic approach to

cyanobacterial genomics. Front Microbiol 8:809.https://doi.org/10.3389/ fmicb.2017.00809.

11. Seymour JR, Amin SA, Raina JB, Stocker R. 2017. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria re-lationships. Nat Microbiol 2:17065.https://doi.org/10.1038/nmicrobiol .2017.65.

Pinto et al.

Volume 6 Issue 5 e00009-18 genomea.asm.org 2

on September 13, 2018 by guest

http://mra.asm.org/

(3)

Correction for Pinto et al., “Draft Genome Sequences of Novel

Pseudomonas, Flavobacterium, and Sediminibacterium Strains

from a Freshwater Ecosystem”

Federica Pinto,aAdrian Tett,aFederica Armanini,aFrancesco Asnicar,aAdriano Boscaini,bEdoardo Pasolli,aMoreno Zolfo,a Claudio Donati,bNico Salmaso,b Nicola Segataa

aCentre for Integrative Biology, University of Trento, Trento, Italy bEdmund Mach Foundation, San Michele all’Adige, Italy

Volume 6, no. 5, e00009-18, 2018, https://doi.org/10.1128/genomeA.00009-18.

Page 1: The article title should read as given above.

Published 8 March 2018

Citation Pinto F, Tett A, Armanini F, Asnicar F,

Boscaini A, Pasolli E, Zolfo M, Donati C, Salmaso N, Segata N. 2018. Correction for Pinto et al., “Draft genome sequences of novel

Pseudomonas, Flavobacterium, and Sediminibacterium strains from a freshwater

ecosystem.” Genome Announc 6:e00169-18.

https://doi.org/10.1128/genomeA.00169-18.

Copyright © 2018 Pinto et al. This is an

open-access article distributed under the terms of theCreative Commons Attribution 4.0 International license.

AUTHOR CORRECTION

crossm

Riferimenti

Documenti correlati

2. Sommare i coefficienti dei monomi simili applicando la proprietà distributiva 4. Il prodotto di due o più monomi è uguale un monomio che ha per coefficiente il prodotto

(e viceversa, con OR e NOT possiamo «fare» porte AND) Quindi, potremmo limitarci a porte AND e NOT e fare tutto con loro!. (oppure OR e

[r]

2 punti: risposta corretta, soluzione migliore, buona proprietà di linguaggio, esposizione chiara e leggibile.. 1,8 punti: risposta corretta, soluzione migliore con qualche

1,6 punti: risposta corretta, soluzione migliore ma senza una buona proprietà di linguaggio o senza una buona esposizione.. 1,4 punti: risposta corretta ma non la

1.9) Mostrare che uno spazio topologico X `e di Hausdorff se e solo se, per ogni x ∈ X, l’intersezione degli intorni chiusi di x coincide con {x}.. 1.10) Sia X uno spazio

10 - Un decisore con un costo opportunità del 8% per i prossimi 3 anni ed un capitale disponibile di 10000 valuta la convenienza ad impiegare il proprio capitale nei

a) Disegna due angoli uno di 74° e uno di 143° e le loro bisettrici. Indica bene il nome degli angoli e la proprietà della bisettrice.. b) Disegna un segmento di 6.5 cm non