• Non ci sono risultati.

(1)Problem 11832 (American Mathematical Monthly, Vol.122, April 2015) Proposed by D

N/A
N/A
Protected

Academic year: 2021

Condividi "(1)Problem 11832 (American Mathematical Monthly, Vol.122, April 2015) Proposed by D"

Copied!
1
0
0

Testo completo

(1)

Problem 11832

(American Mathematical Monthly, Vol.122, April 2015) Proposed by D. Knuth (USA).

Let C(z) be the generating function of the Catalan numbers. Prove that

(log(C(z)))2=

X

n=1

2n n



(H2n−1− Hn)zn n, where Hk =Pk

j=11/j is the k-th harmonic number.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

We note that

X

n=1

2n n

 zn n =

Z z 0

X

n=1

2n n



xn−1dx = Z z

0

 1

√1 − 4x− 1 dx x

= Z 1

1−4z

 1

√t − 1

 dt 1 − t =

Z 1 1−4z

√ 1 t(1 +√

t)dt

=h

2 ln(1 +√ t)i1

1−4z

= 2 log(C(z)).

Hence

(log(C(z)))2= 1 4

X

n=1 n−1

X

k=1

 1

k(n − k)

2k k

2(n − k) n − k



zn

= 1 4

X

n=1 n−1

X

k=1

 1 k+ 1

n − k

 2k k

2(n − k) n − k

 zn n

= 1 2

X

n=1 n−1

X

k=1

 1 k

2k k

2(n − k) n − k

 zn n. Therefore, it suffices to show by induction that

n−1

X

k=1

F (n, k) = 2(H2n−1− Hn) where F (n, k) = 1 k

2k k

2(n − k) n − k

2n n

−1

.

It holds for n = 1, and it is easy to verify that

F (n + 1, k) − F (n, k) = G(n, k + 1) − G(n, k) where G(n, k) = − k2(2n − 2k + 1)F (n, k) (n + 1)(2n + 1)(n + 1 − k). Hence, by the inductive assumption,

n

X

k=1

F (n + 1, k) =

n

X

k=1

F (n, k) +

n

X

k=1

(G(n, k + 1) − G(n, k))

= 2(H2n−1− Hn) + F (n, n) + G(n, n + 1) − G(n, 1)

= 2(H2n−1− Hn) +1

n + 0 + (2n − 1)F (n, 1) (n + 1)(2n + 1)n

= 2(H2n−1− Hn) +1

n + 1

(n + 1)(2n + 1) = 2(H2n+1− Hn+1).



Riferimenti