• Non ci sono risultati.

Prove Z ∞ 0 x sinh(x) 3 + 4 sinh2(x)dx = π2 24

N/A
N/A
Protected

Academic year: 2021

Condividi "Prove Z ∞ 0 x sinh(x) 3 + 4 sinh2(x)dx = π2 24"

Copied!
1
0
0

Testo completo

(1)

Problem 12199

(American Mathematical Monthly, Vol.127, August-September 2020) Proposed by S. Sharma (India).

Prove

Z

0

x sinh(x)

3 + 4 sinh2(x)dx = π2 24.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. By letting e−x= t, we have that Z

0

x sinh(x)

3 + 4 sinh2(x)dx = −1 2

Z 1 0

log(t)(1/t − t) 3 + (1/t2+ t2− 2)

dt t = −1

2 Z 1

0

log(t)(1 − t2) t4+ t2+ 1 dt

= −1 2

Z 1 0

log(t)(1 − t2)2

1 − t6 dt = −1 2

Z 1 0

log(t)(1 − 2t2+ t4)

X

k=0

t6kdt

=1

2 −

Z 1 0

log(t)

X

k=0

t6kdt + 2 Z 1

0

log(t)

X

k=0

t6k+2dt − Z 1

0

log(t)

X

k=0

t6k+4dt

!

=1

2 −

X

k=0

Z 1 0

log(t)t6kdt + 2

X

k=0

Z 1 0

log(t)t6k+2dt −

X

k=0

Z 1 0

log(t)t6k+4dt

!

=1 2

X

k=0

1

(6k + 1)2 − 2

X

k=0

1 (6k + 3)2 +

X

k=0

1 (6k + 5)2

!

=1 2

X

k=0

1

(2k + 1)2 − 3

X

k=0

1 (6k + 3)2

!

=1 2

 1 − 3

32

 X

k=0

1

(2k + 1)2 =1 3

X

k=0

1

(2k + 1)22 24

where the interchange of summation and integration is justified by Fubini’s theorem and we applied Z 1

0

log(t)tndt = − Z

0

xe(n+1)xdx = − 1 (n + 1)2

Z

0

se−sds = − 1 (n + 1)2.



Riferimenti