• Non ci sono risultati.

Urto tra una massa e un sistema con cilindro rotante ??

N/A
N/A
Protected

Academic year: 2021

Condividi "Urto tra una massa e un sistema con cilindro rotante ??"

Copied!
3
0
0

Testo completo

(1)

6.64. URTO TRA UNA MASSA E UN SISTEMA CON CILINDRO ROTANTE??

PROBLEMA 6.64

Urto tra una massa e un sistema con cilindro rotante ??

m1 m2 m3

k, `0 v0

v0 R

Figura 6.67.: Il sistema descritto nell’esercizio. Le masse m2 e m3 scorrono sul piano senza attrito, il cilindro rotola senza strisciare.

Un cilindro di massa m1 e raggio R è collegato ad una massa m2 da una molla di costante elastica k e lunghezza a riposo`0. La massa m2può muoversi sul piano senza attrito, mentre il cilindro è vincolato a ruotare senza strisciare. Inizialmente entrambi i corpi si muovono come in Figura 6.67, con la stessa velocità v0 e con la molla alla lunghezza di riposo. Avviene quindi un urto istantaneo completamente anelastico tra la massa m2e una massa m3: anche quest’ultima può muoversi senza attrito sul piano orizzontale. Calcolare la massima compressione raggiunta successivamente dalla molla.

Soluzione

Durante l’urto la molla rimane alla sua lunghezza di riposo, dato che questo avviene istantaneamente. Quindi non ci sono forze esterne orizzontali applicate al sistema m2+ m3 e la sua quantità di moto si conserva. Detta v00 la velocità di m2+m3 dopo l’urto abbiamo

m2v0 = (m2+m3)v00 e quindi

v00= m2 m2+m3

v0

Per la stessa ragione (molla a riposo) non ci sono forze esterne orizzontali che agiscono su m1, quindi la sua quantità di moto non cambia e la sua velocità immediatamente dopo l’urto rimane v0.

Abbiamo adesso il sistema rappresentato in Figura 6.68. L’energia si conserva, e la possiamo scrivere nella forma

E= 1

2ICMω2+1

2m1v21+1

2(m2+m3)v22+3+ k 2∆2 dove abbiamo indicato con

597 versione del 22 marzo 2018

(2)

6.64. URTO TRA UNA MASSA E UN SISTEMA CON CILINDRO ROTANTE??

m1

m2+ m3

k, `0

v1 v2+3

R

P

Figura 6.68.: Il sistema dopo l’urto. In rosso sono rappresentate le forze esterne che agiscono sul cilindro, in blu quelle che agiscono sul corpo m2+m3, in verde quelle interne.

ωla velocità angolare del cilindro;

v1la velocità del centro di massa del cilindro;

ICMil momento di inerzia del cilindro rispetto al suo asse, che passa dal centro di massa;

v2+3la velocità del corpo m2+m3;

◦ ∆ la compressione della molla.

Nel momento di massima compressione abbiamo v1= v2+3vf. Inoltre dalla condizio- ne di puro rotolamento segue che ω =−v1/R. Di conseguenza eguagliando l’energia immediatamente dopo l’urto a quella nel momento di massima compressione otteniamo (usando ICM = m1R2/2)

1 2

3

2m1+ m

22

m2+m3



v20= 1 2

3

2m1+m2+m3

 v2f +k

2∆2MAX

Per calcolare vf ci serva un’altra legge di conservazione. La quantità di moto orizzontale del sistema non si conserva: infatti a si scrive vincolo di puro rotolamento al cilindro è applicata una reazione orizzontale. La seconda equazione cardinale applicata al cilindro, rispetto ad un polo posto nel punto di contatto, si scrive

d

dt(ICMωm1v1R) =k∆R mentre la prima equazione per il corpo m2+m3si scrive

d

dt[(m2+m3)v2+3] =k∆

Moltiplicando quest’ultima membro a membro per R e sottraendo alla prima abbiamo d

dt[ICMωm1v1R− (m1+m2)Rv2+3] =0

598 versione del 22 marzo 2018

(3)

6.64. URTO TRA UNA MASSA E UN SISTEMA CON CILINDRO ROTANTE??

Di conseguenza la quantità

A=−3

2m1v1R− (m2+m3)Rv2+3

si conserva. Da notare che questo non è in generale il momento angolare totale rispetto al punto di appoggio del cilindro, che si scriverebbe (indicando con hCM l’altezza del centro di massa del corpo m2+3)

L=−3

2m1v1R− (m2+m3)hCMv2+3

e non sarebbe conservato. La non conservazione è dovuta al momento delle reazioni normali distribuite che il piano esercita sul corpo m2+m3.

Eguagliando il valore iniziale e finale di A troviamo vf =

3

2m1+m2

3

2m1+m2+m3

v0 e sostituendo nella conservazione dell’energia troviamo

k∆2MAX =

"

6m1+ 2m

22

m2+m32

3

2m1+m22

3m1+2m2+2m3

# v20

599 versione del 22 marzo 2018

Riferimenti

Documenti correlati

Queste ultime sono collegate da una molla di costante

La molla di lunghezza a riposo uguale alla lunghezza del piano inclinato è libera di contrarsi, e il piano inclinato è libero di spostarsi sul piano orizzontale.. Non vi

[r]

Un disco di massa M e raggio R è libero di ruotare attorno ad un asse verticale orto- gonale ad esso e passante per il suo centro.. Sul suo bordo si trova una macchinina di

[r]

Sappiamo però che il cilindro durante l’urto applica un impulso orizzontale J al blocco, e quindi possiamo scrivere?. M 2 ∆V

Nel cilindro di sezione S in figura sono contenute n moli di un gas perfetto monoa- tomico, e la molla che collega il setto mobile al fondo ha lunghezza a riposo nulla ed esercita

• tutte le oscillazioni si comporteranno allo stesso modo, cambia solo ω (T) a seconda del sistema e cambia lo spostamento dalla posiz. della corrente) saranno dati da