• Non ci sono risultati.

r2 π 1 n!(1 + x2)n/2 dn dxn  1 1 + x2  Prove that for nonnegative integers m and n, Z

N/A
N/A
Protected

Academic year: 2021

Condividi "r2 π 1 n!(1 + x2)n/2 dn dxn  1 1 + x2  Prove that for nonnegative integers m and n, Z"

Copied!
1
0
0

Testo completo

(1)

Problem 11850

(American Mathematical Monthly, Vol.122, June-July 2015) Proposed by Z. Ahmed (India).

Let An be the function given by

An(x) = r2

π 1

n!(1 + x2)n/2 dn dxn

 1

1 + x2



Prove that for nonnegative integers m and n, Z +∞

−∞

Am(x)An(x)dx = δ(m, n),

where δ(m, n) = 1 if m = n, and otherwise δ(m, n) = 0.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Let I(m, n) be the desired integral. We first note that An has the same parity as n and |An(x)| = O(1/x2). So I(m, n) is finite and, by symmetry, I(m, n) = 0 when m + n is odd.

Now assume that m + n is even. By the generalized to the Leibniz rule, dn

dxn

 1

1 + x2



= dn dxn

 1

(x + i)(x − i)



=

n

X

k=0

n k

 dk dxk

 1

(x − i)



· dn−k dxn−k

 1

(x + i)



= (−1)nn!

n

X

k=0

1

(x − i)k+1(x + i)n−k+1.

Hence, when m + n is even, the integrand function is rational and we can use the residue theorem to evaluate the integral on the real line,

I(m, n) = 2(−1)n+m π

Z +∞

−∞

n

X

k=0 m

X

j=0

(x − i)n+m2 (x + i)n+m2

(x + i)k+j+2(x − i)n+m−k−j+2dx

= 4i

n

X

k=0 m

X

j=0

Res (x − i)n+m2 (x + i)n+m2 (x − i)k+j+2(x + i)n+m−k−j+2, i

!

= 4i

n

X

k=0 m

X

j=0

[w−1] (w + 2i)n+m2 +k+j−2 wn+m2 +k+j+2

!

= 4i

n

X

k=0 m

X

j=0

[w−1]X

r≥0

−n+m2 + k + j − 2 r

 (2i)n+m2 +k+j−2−r wn+m2 +k+j+2−r

= −1 2

X

r≥0

r − 3 r



P (n, m, r − 1)

= −1 2

−3 0



P (n, m, −1) +−2 1



P (n, m, 0) +−1 2



P (n, m, 1)



=

12((min(m, n) + 1) − 2(min(m, n) + 1) + (min(m, n) + 1)) = 0 if m 6= n,

12((m − 2(m + 1) + m) = 1 if m = n.

where P (n, m, s) is the number of integer couples (k, j) ∈ [0, n] × [0, m] such that k + j = n+m2 + s.



Riferimenti