• Non ci sono risultati.

Prove Z ∞ 1 ln(x4− 2x2+ 2) x√ x2− 1 dx = π ln(2

N/A
N/A
Protected

Academic year: 2021

Condividi "Prove Z ∞ 1 ln(x4− 2x2+ 2) x√ x2− 1 dx = π ln(2"

Copied!
1
0
0

Testo completo

(1)

Problem 12184

(American Mathematical Monthly, Vol.127, May 2020) Proposed by P. Perfetti (Italy).

Prove

Z

1

ln(x4− 2x2+ 2) x√

x2− 1 dx = π ln(2 +√ 2).

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. After letting t =√

x2− 1, we have that Z

1

ln(x4− 2x2+ 2) x√

x2− 1 dx = Z

0

ln(t4+ 1)

t2+ 1 dt = I(π/4) + I(−π/4) where

I(α) :=

Z

0

ln(t2+ 2 sin(α)t + 1) t2+ 1 dt.

Now, for α ∈ (0, π/2), I(α) =

Z

0

2 cos(α)t

(t2+ 1)(t2+ 2 sin(α)t + 1)dt

= 1

tan(α)

Z

0

dt t2+ 1−

Z

0

dt t2+ 2 sin(α)t + 1



= π

2 tan(α)− 1 sin(α)

π 2 − α

= −π tan(α/2)

2 + α

sin(α). Since

I(0) = Z

0

ln(t2+ 1) t2+ 1 dt =

Z π/2 0

ln(tan2(s) + 1)

tan2(s) + 1 d(tan(s)) = −2 Z π/2

0

ln(cos(s)) ds = π ln(2) it follows

I(α) = I(0) + Z α

0

I(α) dα = π ln (2 cos(α/2)) + Z α

0

a sin(a)da.

Hence

I(α) + I(−α) = π ln 4 cos2(α/2) = π ln(2(1 + cos(α)).

Finally, for α = π/4 we find

I(π/4) + I(−π/4) = π ln(2 + 2 cos(π/4)) = π ln(2 +√ 2)

and we are done. 

Remark. Let J =Rπ/2

0 ln(cos(s)) ds =Rπ/2

0 ln(sin(s)) ds. Then 2J =

Z π/2 0

ln(sin(s) cos(s)) ds = Z π/2

0

ln(sin(2s)) ds − Z π/2

0

ln(2) ds

= 1 2

Z π 0

ln(sin(s)) ds −π ln(2)

2 = J − π ln(2) 2 Hence 2J = −π ln(2).

Riferimenti