ESERCIZI MATEMATICA DISCRETA (25/01/11) Soluzioni 1) Si può applicare il principio di inclusione-esclusione in forma positiva. Si costruiscono i 3 insiemi (uno per ognuna delle 3 proprietà): A
Testo completo
A=9, A1
, A1
Documenti correlati
[r]
Ogni vertice pari è adiacente a tutti gli altri (pari o dispari), mentre 2 vertici dispari non sono adiacenti fra loro: il grafo è allora connesso (perché dati comunque 2
Calcolare quante sono le matrici in A in cui almeno due righe hanno elementi tutti pari (5 p.) 5) Dimostrare che, per ogni numero naturale n, la somma dei primi (n+3) numeri
Poiché X contiene i sottoinsiemi del complementare di B (complementare che ha cardinalità 6) si ha X=2 6. 3) Si può usare il principio delle scelte multiple: ognuna delle
[r]
Ma gli addendi con cifra =1 sono potenze di base 3, quindi sono dispari, e affinché la loro somma sia pari, il numero di tali addendi deve essere pari (in modo che sommati a
2) Si consideri il grafo semplice non orientato in cui i vertici sono tutte le parole sull'alfabeto {x,y,z,t} di lunghezza compresa fra 1 e 5 (inclusi), e in cui due vertici
Lezione del giorno 9 novembre 2011 Uso del principio di inclusione-esclusione. Esistono un uso positivo e un uso negativo del principio di inclusione-esclusione. 2) Uso negativo