• Non ci sono risultati.

FONDAMENTI DI FISICA MATEMATICA

N/A
N/A
Protected

Academic year: 2021

Condividi "FONDAMENTI DI FISICA MATEMATICA"

Copied!
3
0
0

Testo completo

(1)

FONDAMENTI DI FISICA MATEMATICA Docente: Prof. Cornelis van der Mee

Laurea magistrale in Matematica (Universit`a di Cagliari) 8 CFU; settore disciplinare: MAT07 (Fisica Matematica)

Programma:

a. Classificazione delle equazioni differenziali (4 ore). Classifica- zione dei principali modelli differenziali alle derivate parziali (PDEs).

Problemi modello di tipo stazionario (equazione di Laplace), evolutivo di I ordine (equazione del calore) e di II ordine (equazione delle onde).

Condizioni sufficienti per l’esistenza e l’unicit`a della soluzione.

b. Richiami sulle equazioni differenziali ordinarie, ODE (8 ore).

La soluzione generale di una ODE lineare del II ordine. Il caso speciale di una ODE lineare del II ordine con coefficienti costanti. Introduzione al metodo spettrale. Teoria spettrale di Sturm-Liouville. Conversione di una ODE di ordine superiore in un sistema di ODE del I ordine.

Sistemi ODE lineari a coefficienti costanti.

c. Fondamenti di analisi armonica (8 ore). Ortogonalit`a delle fun- zioni trigonometriche e sviluppo di una funzione in serie di Fourier. Il caso speciale delle funzioni pari e dispari. Convergenza, integrazione e differenziazione delle serie di Fourier. Convergenza uniforme. Deca- dimento dei coefficienti di Fourier. Applicazioni alla risoluzione delle equazioni differenziali ordinarie.

d. Metodi analitici di risoluzione (14 ore). Risoluzione analitica mediante il metodo degli integrali generali. Il metodo di separazione delle variabili. Risoluzione di PDEs in domini regolari mediante metodi spettrali. L’equazione di Laplace sul rettangolo e sul cerchio unitario.

Formula risolvente di Poisson. L’equazione del calore con estremi isolati e con un estremo radiante. L’equazione delle onde in assenza e in presenza di una forza esterna. L’equazione delle onde sul rettangolo.

Risoluzione di PDEs in domini regolari, mediante metodi spettrali.

e. Risoluzione di PDEs con il metodo alle differenze finite (16 ore). Risoluzione delle ODEs lineari del II ordine con valori noti agli estremi. Valutazione dell’errore. Risoluzione numerica dell’associato problema algebrico. Il metodo iterativo di Newton per la risoluzione

(2)

di modelli differenziali ordinari debolmente nonlineari con valori agli estremi. Risoluzione di equazioni ellittiche lineari mediante schemi alle differenze centrali. Risoluzione delle equazioni di tipo parabolico con uno schema implicito a quattro punti e di quelle iperboliche mediante uno schema implicito a sette punti. Valutazione dell’errore di discretiz- zazione. Risoluzione delle equazioni ellittiche e paraboliche debolmente nonlineari con il metodo di Newton-Jacobi.

f. Risoluzione di PDEs con il metodo agli elementi finiti (14 ore). Gli elementi finiti in una dimensione. La formulazione debole di un BVP. Equivalenza fra forma forte e debole. Il metodo di Galerkin.

Polinomi continui a tratti e metodo degli elementi finiti. Valutazio- ne dell’errore. Esempi utilizzando elementi finiti a tratti. Il meto- do degli elementi finiti in due dimensioni (Caso ellittico, parabolico e iperbolico). Applicazioni alle equazioni di Helmholtz.

Testi di riferimento:

1. Libro di testo principale: Sebastiano Seatzu e Pietro Contu, Equa- zioni alle Derivate Parziali. Una Introduzione ai Metodi di Risolu- zione Analitica e Numerica, Pitagora Editrice, Bologna, 2012. ISBN 88-371-1866-X.

2. Di sostegno: Mark S. Gockenbach, Understanding and Implementing the Finite Element Method, SIAM, Philadelphia, USA, 2006.

3. Di sostegno: A. Quarteroni, Modellistica Numerica per Problemi Dif- ferenziali, Springer, Milano, 2003.

Obiettivi, valutazione e propedeuticit`a:

a. Obiettivi: Far acquisire una conoscenza operativa di metodi basilari per lo studio dei modelli differenziali alle derivate parziali di tipo sta- zionario ed evolutivo. Per tale motivo l’illustrazione di ogni argomento viene corredata dallo svolgimento di esercizi, senza alcuna distinzione formale tra le ore di lezione e quelle di esercitazione.

b. Valutazione: La valutazione avviene mediante n.2 prove scritte in- termedie, oppure mediante un esame scritto sull’intero programma. In ambedue i casi segue una prova orale. Lo studente deve sostenere l’orale entro il periodo previsto dal Corso di Laurea in Matematica.

(3)

c. Propedeuticit`a: Il corso presuppone una buona conoscenza degli argomenti di base dell’analisi e dell’algebra lineare.

Riferimenti

Documenti correlati

Per il paladino la prima metà del poema è una lenta catabasi verso l’inferno dell’alienazione. La scelta di Medoro, povero fante, da parte della donna più bella, rappresenta

Post-operative pH-metry always showed a reduction in exposure of the distal oesophagus to acid (integral of H+) and an improvement in oesophageal clearance

[r]

g: retta che collega primo e ultimo valore che verrebbero rilevati;. m: scarto fra i valori che verrebbero rilevati in corrispondenza

Le ascisse dei punti d’intersezione dei grafici, se ci sono, rappresentano le

Nel primo passo si usano i multipli del pivot della prima equazione per annullare tutti i coefficienti sotto il primo pivot; s’itera poi l’algoritmo per

MIRANDA, Teorema det massimo modulo c teorema di esistenza e di unicit~ per il problema di Dirichlet relative alle equazioni ellittiche in due variabili, •

f) Si dica se la successione generata dal metodo delle tangenti a partire dal punto iniziale x 0 = 0 risulta convergente.. Il metodo risulta quindi convergente ad α, unica

Dopo quanto detto riguardo agli innumerevoli vantaggi che si ricavano dall’utilizzo del Perfectly Matched Layer per la determinazione delle condizioni al contorno `e

se si addiziona o si sottrae ai due membri di dominio D di un equazione, uno stesso numero o una stessa espressione letterale, anch essa di dominio D, si ottiene un

e) eseguite la Discussione sul Campo di Esistenza (che consiste nel porre il m.c.m. = 0, risolvere le equazioni che risultano e poi barrare i segni di ugua- glianza). f) al I

I La maggior parte delle librerie di calcolo disponibili combinano spesso i vari metodi, accoppiando per esempio il metodo di Brent (per individuare un’approssimazione abbastanza

In questo contesto acquista una sempre maggiore valenza l’introduzione storica di alcune questioni matematiche fondamentali; come la disputa tra Cardano e Tartaglia relativa

Methods: Human Microvascular Endothelial cells (HMEC), retinal pericytes (HRP), and Müller cells (MIO-M1) were exposed to hyperglycaemic-like conditions (intermittent

[r]

Inoltre l'argomento della tesi presenta elementi di notevole interesse scientifico e ingegneristico in quanto tratta della progettazione, realizzazione e messa a punto

Applicazione del teorema del resto e della regola di Ruffini per scomporre polinomi di grado superiore al secondo e quindi per risolvere equazioni di grado superiore al

Possono avere precisioni diverse: i pi` u comuni sono esatti fino al secondo e

[r]

Indica come avete svolto il compito e cosa hai fatto tu Indica quali crisi hai dovuto affrontare e come le hai risolte Che cosa hai imparato da questa unità di apprendimento

[r]

Le parabole di equazioni:

8) L’industria pesante fornisce le materie prime per le altre industrie [V] [F] 9) Le materie prime prodotte per le altre industrie si chiamano anche semilavorati [V]