• Non ci sono risultati.

La sua chiusura `e l’insieme A = {(x, y) 2 R2| x y  2x}

N/A
N/A
Protected

Academic year: 2021

Condividi "La sua chiusura `e l’insieme A = {(x, y) 2 R2| x y  2x}"

Copied!
6
0
0

Testo completo

(1)

Risoluzione

1. L’insieme A ={(x, y) 2 R2| x 2 [0, 1], 0  y < 2x}, rappresentato in figura

non risulta n´e aperto, n´e chiuso. Ha interno A ={(x, y) 2 R2 | x 2 (0, 1), 0 < y < 2x}, frontiera @A costituita dall’unione dei tre segmenti S1 = {(x, y) 2 R2 | y = 0, x 2 [0, 1]}, S2 = {(x, y) 2 R2 | x = 1, y2 [0, 2]} e S3={(x, y) 2 R2| x 2 [0, 1], y = 2x}. La sua chiusura `e l’insieme A = {(x, y) 2 R2| x 2 [0, 1], 0 y  2x}.

2. L’insieme B ={(x, y) 2 R2| 0 < x2+ 4y2< 4, x 1} in figura

non risulta n´e aperto, n´e chiuso. Ha interno B = {(x, y) 2 R2 | 0 < x2+ 4y2 < 4, x < 1}, frontiera

@B = {(0, 0)} [ {(x, y) 2 R2 | x2+ 4y2 = 4, x2 [ 2, 1]} [ {(x, y) 2 R2 | y 2 [ p23,p23], x = 1}, dato che i punti di intersezione tra l’ellisse x2+ 4y2 = 4 e la retta x = 1 sono P± = (1,±p23), e chiusura B ={(x, y) 2 R2| x2+ 4y2 4, x  1}.

3. L’insieme C ={(x, y) 2 R2| x2+ y2< 4, |y| < |x|} in figura

(2)

`e aperto, dunque coincide con il suo interno, C = C , non risulta quindi chiuso. Ha frontiera @C = {(x, y) 2 R2 | x2+ y2 = 4,|x| 2 [p

2, 2]} [ {(x, y) 2 R2 | |y| = |x|, x 2 [ p 2,p

2]} e chiusura B = {(x, y) 2 R2| x2+ y2 4, |y|  |x|}.

4. L’insieme D ={(x, y) 2 R2| x2 y  x + 2} in figura

`e chiuso, quindi coincide con la sua chiusura, D = D, non risulta quindi aperto. Ha frontiera @D = {(x, y) 2 R2| y = x2, x2 [ 1, 2]} [ {(x, y) 2 R2 | y = x + 2, x 2 [ 1, 2]} e interno D = {(x, y) 2 R2 | x2< y < x + 2}.

5. La funzione f (x, y) = log(x2+ y2 1) `e definita in D ={(x, y) 2 R2 | x2+ y2 > 1}. Per ogni ↵ 2 R l’insieme di livello

Z(f ) ={(x, y) 2 D | log(x2+ y2 1) = ↵} = {(x, y) 2 D | x2+ y2= 1 + e}

`e la circonferenza di centro l’origine e raggiop

1 + e> 1.

6. La funzione f (x, y) = ex2y `e definita in R2 e assume solo valori positivi. L’insieme di livello Z(f ) = {(x, y) 2 R2| ex2y = ↵} sar`a quindi vuoto se ↵  0, mentre per ↵ > 0 abbiamo che

Z(f ) ={(x, y) 2 R2| ex2y = ↵} = {(x, y) 2 R2| xy2 = log ↵}

`e la parabola y = x2log ↵ di vertice l’origine e concavit`a verso l’alto se ↵ > 1, verso il basso se 0 < ↵ < 1,

`e l’asse y = 0 se ↵ = 1.

(3)

7. La funzione f (x, y) = pxy `e definita in D ={(x, y) 2 R2 | xy 0} e assume solo valori non negativi.

L’insieme di livello Z(f ) ={(x, y) 2 D |pxy = ↵} `e quindi vuoto se ↵ < 0, per ↵ = 0 abbiamo invece che risulta costituito dall’unione dei due assi x = 0 e y = 0 mentre per ↵ > 0 abbiamo che

Z(f ) ={(x, y) 2 D | xy = ↵2}

`e costituito dall’iperbole equilatera y = x2.

8. La funzione f (x, y) = x22x+y2 `e definita in D =R2\ {(0, 0)}. Per ogni ↵ 6= 0 abbiamo che Z(f ) ={(x, y) 2 D | x22x+y2 = ↵} = {(x, y) 2 D | x2+ y2=2x}

={(x, y) 2 D | (x 1)2+ y2=12}

`e la circonferenza di centro (1, 0) di raggio 1 privata dell’origine (osserviamo che la circonferenza passa per l’origine per ogni ↵6= 0). Per ↵ = 0 abbiamo invece che Z(f ) ={(x, y) 2 D | x = 0} coincide con l’asse delle ordinate privato dell’origine.

9. La funzione f (x, y) =p

x2+ 2x + 1 + y2=p

(x + 1)2+ y2ha per dominioR2. Dato che f (x, y) 0 per ogni (x, y)2 R2, se ↵ < 0 l’insieme di livello Z(f ) ={(x, y) 2 R2| f(x, y) = ↵} `e vuoto, se ↵ = 0 allora Z(f ) ={( 1, 0)} mentre per ↵ > 0 abbiamo che

Z(f ) ={(x, y) 2 R2| (x + 1)2+ y2= ↵2}

`e la circonferenza di centro C = ( 1, 0) e raggio ↵. Il grafico della funzione `e il cono ad una falda z =p

(x + 1)2+ y2 di vertice ( 1, 0, 0) e asse la retta parallela all’asse z per ( 1, 0, 0)

x

y z

1

1

(4)

10. La funzione f (x, y) = x2+y42 y + 1 = x2+(y 2)4 2 `e definita inR2. Dato che x2+(y 2)4 2 0 per ogni (x, y)2 R2, per ↵ < 0 l’insieme di livelloZ(f ) ={(x, y) 2 R2| f(x, y) = ↵} `e vuoto, per ↵ = 0 abbiamo cheZ0(f ) ={(0, 2)} mentre per ↵ > 0 abbiamo

Z(f ) ={(x, y) 2 R2| f(x, y) = ↵} = {(x, y) 2 R2| x2+(y 2)4 2 = ↵}

e l’insieme di livello `e l’ellisse di centro C = (0, 2) e semiassi p↵, 2p↵. Il grafico della funzione `e il paraboloide ellittico z = x2+(y 2)4 2

x

z

y

2

11. La funzione f (x, y) = 1 y2 x2 2x = 2 ((x + 1)2+ y2) `e definita inR2. Poich´e 2 ((x + 1)2+ y2) 2 per ogni (x, y)2 R2, per ↵ > 2 l’insieme di livelloZ(f ) ={(x, y) 2 R2| f(x, y) = ↵} `e vuoto, per ↵ = 2 abbiamo cheZ(f ) ={( 1, 0)} mentre per ↵ < 2 l’insieme

Z(f ) ={(x, y) 2 R2| (x + 1)2+ y2= 2 }

`e la circonferenza di centro C = ( 1, 0) e raggiop

2 ↵. Il grafico della funzione `e il paraboloide circolare z = 2 ((x + 1)2+ y2)

x

z

y

2

1

12. La funzione f (x, y) = y2 2y x2= (y 1)2 x2+ 1 `e definita in R2. Per ↵6= 1 l’insieme Z(f ) ={(x, y) 2 R2| f(x, y) = ↵} = {(x, y) 2 R2| (y 1)2 x2= ↵ 1}

(5)

`e un iperbole con asse focale verticale x = 0 se ↵ > 1, orizzontale y = 1 se ↵ < 1 mentre per ↵ = 1 abbiamo che

Z1(f ) ={(x, y) 2 R2| (y 1)2= x2} = {(x, y) 2 R2| |y 1| = |x|}

`e l’unione delle rette y =±x + 1.

Il grafico della funzione `e il paraboloide iperbolico z = (y 1)2 x2+ 1

x

y z

1 1

13. Il limite lim

(x,y)!(0,0) sin(xy)

x2+y2 non esiste, infatti, posto f (x, y) = sin(xy)x2+y2, lungo le rette y = mx abbiamo che

xlim!0f (x, mx) = lim

x!0

sin(mx2) 2x2 = lim

x!0

mx2 2x2 = m

2 e dunque che il limite non `e indipendente da m.

14. Il limite lim

(x,y)!(0,0) x2+y2

y non esiste, infatti, posto f (x, y) = x2+yy 2 abbiamo che

xlim!0f (x, x) = lim

x!0

2x2 x = 0 mentre

x!0limf (x, x2) = lim

x!0

x2+ x4 x2 = 1.

Osserviamo che per ogni m2 R, risulta lim

(x,y)!(0,0)f (x, mx) = 0.

(6)

15. Abbiamo che lim

(x,y)!(0,0) x2y

x2+y2 = 0 infatti, posto f (x, y) = x2x+y2y2 si ha che

xlim!0f (x, mx) = mx3

x2+ (mx)2 = 0 8m 2 R e che per ogni " >, scelto 0 < < ", sep

x2+ y2< allora

|f(x, y)| = x2y

x2+ y2  |y| p

x2+ y2< < "

quindi la condizione di limite `e verificata.

16. Per calcolare lim

(x,y)!(0,0)

xy2 x2y

x2+y2 , posto f (x, y) = xyx22+yx22y passando alle coordinate polari, calcoliamo

lim!0+f (⇢ cos ✓, ⇢ sin ✓). Abbiamo

lim!0+f (⇢ cos ✓, ⇢ sin ✓) = lim

!0+⇢(cos ✓ sin2 cos2✓ sin ✓) = 0, 8✓ 2 [0, 2⇡].

Il limite risulta uniforme rispetto a ✓2 [0, 2⇡] essendo

|⇢(cos ✓ sin2 cos2✓ sin ✓)|  2⇢, 8✓ 2 [0, 2⇡], e 2⇢! 0 per ⇢ ! 0+. Possiamo quindi concludere che lim

(x,y)!(0,0)f (x, y) = 0.

17. Per calcolare lim

(x,y)!(0,1)

p xy x

x2+(y 1)2, posto f (x, y) = p xy x

x2+(y 1)2, utilizzando le coordinate polari centrate in (0, 1), calcoliamo innazitutto il limite lim

!0+f (⇢ cos ✓, 1 + ⇢ sin ✓). Si ha

lim!0+f (⇢ cos ✓, 1 + ⇢ sin ✓) = lim

!0+

2cos ✓ sin ✓

= 0 8✓ 2 [0, 2⇡]

e il limite risulta uniforme rispetto a ✓ dato che per ogni ✓2 [0, 2⇡] si ha

|f(⇢ cos ✓, 1 + ⇢ sin ✓)| = |⇢ cos ✓ sin ✓|  ⇢.

Ne segue allora che lim

(x,y)!(0,1)f (x, y) = lim

(x,y)!(0,1)

p xy x

x2+(y 1)2 = 0.

18. Per calcolare lim

(x,y)!(0,0)

(x2+y2)y2(x+2)

x4+y4 , utilizziamo le coordinate polari. Posto f (x, y) = (x2+yx42+y)(x+2)4 , abbiamo

lim!0+f (⇢ cos ✓, ⇢ sin ✓) = lim

!0+

2(⇢ cos ✓ + 2)

4(cos4✓ + sin4✓) = +1 8✓ 2 [0, 2⇡]

uniformemente rispetto a ✓, infatti per ogni 0 < ⇢ < 1 e ✓2 [0, 2⇡] risulta

f (⇢ cos ✓, ⇢ sin ✓) = 2(⇢ cos ✓ + 2)

4(cos4✓ + sin4✓) 1

2 ! +1, per ⇢ ! 0+. Possiamo allora concludere che lim

(x,y)!(0,0)f (x, y) = lim

(x,y)!(0,0)

(x2+y2)y2(x+2)

x4+y4 = +1.

Riferimenti

Documenti correlati

Il testo del compito deve essere consegnato insieme alla bella, mentre i fogli di brutta non devono essere consegnati.. Durante la prova non ` e consentito l’uso di libri,

a se si intersecano allora sono contenute in un piano affine; b se sono contenute in un piano allora si intersecano; c se sono sghembe generano R 3 ; d se le giaciture sono

Un sistema omogeneo di 5 equazioni in 3 incognite: a non ha soluzione ; b ha sempre almeno una soluzione; c ha soluzione solo in certi casi; d ha sempre una soluzione unica.. Il

Dopo averli rappresentati nel piano cartesiano, descrivere i seguenti insiemi utilizzando le coordi- nate polari o polari ellittiche opportune1. Per visualizzare l’insieme indicato

Dopo averli rappresentati nel piano cartesiano, stabilire se i seguenti insiemi risultano aperti o chiusi, determinarne l’interno, la frontiera e la

Stabilire se i seguenti insiemi risultano domini normali e nel caso esprimerli come tali 1.. D `e un settore circolare di apertura 2↵ e raggio r, di densit`a di

A tale scopo possiamo utilizzare le

Utilizzando l’integrale doppio e le coordinate ellittiche sapresti determinare la formula per calcolare l’area di un settore ellittico sotteso da un angolo ↵ e da un’ellisse