• Non ci sono risultati.

X n=0 2n Cn = 5 +3π 2

N/A
N/A
Protected

Academic year: 2021

Condividi "X n=0 2n Cn = 5 +3π 2 "

Copied!
1
0
0

Testo completo

(1)

Problem 11765

(American Mathematical Monthly, Vol.121, March 2014) Proposed by D. Beckwith (USA).

Let Cn be the nth Catalan number, given by Cn= n+11 2nn. Show that (a)

X

n=0

2n Cn

= 5 +3π

2 ; (b)

X

n=0

3n Cn

= 22 + 8√ 3π.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

It is known that for |z| < 2

f (z) := (arcsin(z/2))2= 1 2

X

n=1

z2n n2 2nn . Therefore

Dz(z3Dz(zDzf )) = Dz z3Dz zDz1 2

X

n=1

z2n n2 2nn

!!

= Dz z3Dz

X

n=1

z2n n 2nn

!

= 2Dz

X

n=1

z2n+2

2n n

 = 4z

X

n=1

z2n Cn. Hence

X

n=0

z2n Cn

= 1 + 1

4zDz(z3Dz(zDzf )) = g(z) := 2(8 + z2)

(4 − z2)2 +24z arcsin(z/2) (4 − z2)5/2 , which implies that

(a)

X

n=0

2n Cn

= g(√

2) = 5 +3π

2 ; (b)

X

n=0

3n Cn

= g(√

3) = 22 + 8√ 3π.



Riferimenti