• Non ci sono risultati.

Prove ∞ X n=0 2n n  1 4n(2n + 1)3 = π3 48 +π ln2(2) 4

N/A
N/A
Protected

Academic year: 2021

Condividi "Prove ∞ X n=0 2n n  1 4n(2n + 1)3 = π3 48 +π ln2(2) 4 "

Copied!
1
0
0

Testo completo

(1)

Problem 12051

(American Mathematical Monthly, Vol.125, June-July 2018) Proposed by P. Ribeiro (Portugal).

Prove

X

n=0

2n n

 1

4n(2n + 1)3 = π3

48 +π ln2(2)

4 .

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. We have that Z 1

0

x2nln(x) dx =

 x2n+1

 ln(x)

(2n + 1)− 1 (2n + 1)2

1

0

= − 1

(2n + 1)2 and, for x ∈ [0, 1],

X

n=0

2n n

 x2n

4n(2n + 1) = arcsin(x)

x .

Hence

X

n=0

2n n

 1

4n(2n + 1)3 = − Z 1

0

arcsin(x) ln(x)

x dx

= −



arcsin(x)ln2(x) 2

1

0

+1 2

Z 1

0

ln2(x)

√1 − x2dx

= 1 2

Z 1 0

ln2(x)

√1 − x2dx = 1 2

Z π/2 0

ln2(sin(t)) dt = π3

48 +π ln2(2) 4 where the last integral is known.

For the sake of completeness, we give here a short proof. Since lnn(1 + z) is holomorphic in the unit disc and it is zero for z = 0, it follows that

0 = Z π

−π

lnn(1 + e) dθ = Z π

−π

(ln(2 cos(θ/2) + iθ/2)ndθ = 2 Z π/2

−π/2

(ln(2 cos(t)) + it)ndt.

By taking the real part we get

⌊n/2⌋

X

k=0

(−1)k n 2k

 Z π/2 0

t2klnn−2k(2 cos t) dt = 0.

For n = 1 and for n = 2, we get Z π/2

0

ln(cos t) dt = −π

2ln(2) ,

Z π/2 0

ln2(2 cos t) dt = Z π/2

0

t2dt =π3 24. Hence

Z π/2 0

ln2(sin(t)) dt = Z π/2

0

ln2(sin(π/2 − t)) dt = Z π/2

0

ln2(cos(t)) dt

= Z π/2

0

ln2(2 cos(t)) dt − 2 ln(2) Z π/2

0

ln(cos(t)) dt −π ln2(2) 2

= π3

24+ π ln2(2) −π ln2(2) 2 = π3

24 +π ln2(2)

2 .



Riferimenti