Problem 11692
(American Mathematical Monthly, Vol.120, February 2013) Proposed by Cezar Lupu (USA) and Stefan Spataru (Romania).
Let a1, a2, a3, a4 be real numbers in (0, 1) with a4= a1. Show that 3
1 − a1a2a3
+
3
X
k=1
1 1 − a3k ≥
3
X
k=1
1
1 − a2kak+1
+ 1
1 − aka2k+1
.
Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.
By Schur’s inequality, for any x, y, z ≥ 0,
x3+ y3+ z3+ 3xyz ≥ x2y + xy2+ x2z + xz2+ y2z + yz2. Let x = ak1, y = ak2, z = ak3 for k ≥ 0, then
(a31)k+ (a32)k+ (a33)k+ 3(a1a2a3)k ≥ (a21a2)k+ (a1a22)k+ (a22a3)k+ (a2a23)k+ (a23a1)k+ (a3a21)k. Finally, since a1, a2, a3∈ (0, 1), by summing for k ≥ 0, the geometric series converge and easily we
obtain the required inequality.