• Non ci sono risultati.

1. Ingegneria Tessutale applicata ai modelli in vitro

1.4 Scopo della tesi

Questo lavoro di tesi ha avuto come obiettivo lo sviluppo di scaffold a base di gelMA fabbricati attraverso tecniche di micro e nano fabbricazione.

Il connubio delle proprietà biochimiche del gelMA e la sua fabbricazione mediante tecniche di Elettrospinning, PAM2 e Soft Lithography può consentire la

realizzazione di matrici 3D nano- e micro-strutturate in grado di mimare le proprietà topologiche dell’ambiente extracellulare e di fornire alle cellule gli stimoli di natura biochimica necessari al loro sviluppo. Una valutazione più accurata dell’influenza degli scaffold in gelMA, ottenuti tramite tecniche di fabbricazione PAM2 e Soft Litography, sulla differenziazione di cellule staminali

mesenchimali estratte da midollo osseo umano verranno investigate in collaborazione con l’Università di Southampton.

Questo lavoro di tesi si compone di cinque capitoli e un’appendice.

Capitolo 1: dopo una breve introduzione sull’importanza di utilizzare dei modelli in vitro nel settore dell’ingegneria tessutale, viene presentata: una descrizione delle caratteristiche principali degli scaffold e dei biomateriali impiegati per la realizzazione di modelli in vitro, una descrizione del gelMA, in termini di processo di sintesi e proprietà del materiale, e infine una descrizione delle attuali tecniche di biofabbricazione per la preparazione degli scaffold in TE, con una maggiore attenzione alle tecniche impiegate (Elettrospinning, PAM2 e Soft Lithography) in

questo lavoro di tesi.

Capitolo 2: dopo una prima descrizione dei metodi di sintesi impiegati per la produzione del gelMA, vengono descritti i processi di realizzazione e caratterizzazione dei diversi scaffold ottenuti attraverso le tecniche di nano (Elettrospinning) e micro (PAM2 e Soft Lithography) fabbricazione. Durante

questa prima fase diversi esperimenti sono stati svolti per ottimizzare le caratteristiche morfologiche degli scaffold a base di gelMA. A tal proposito, sono stati condotti studi morfologici attraverso tecniche di microscopia ottica e test meccanici e di swelling, al fine di comprendere le proprietà meccaniche e valutare

secondo capitolo è inoltre descritto il design e la fabbricazione del nuovo setup di stampa della PAM2 proposto per l’ottimizzazione del processo di reticolazione

delle matrici in gelMA.

Capitolo 3: vengono descritti i risultati ottenuti per ogni tipo di scaffold in funzione della tecnica di fabbricazione impiegata e le relative discussioni.

Capitolo 4: vengono definiti i metodi e i risultati ottenuti dalle colture cellulari eseguite su PAM2 e Soft Lithography di cellule staminali mesenchimali estratte da

midollo osseo umano al fine di valutare l’effetto del pattern sulla differenziazione cellulare.

Capitolo 5: si definiscono le conclusioni e i possibili sviluppi futuri degli scaffold in gelMA ottenuti in questo lavoro di tesi.

In appendice è riportato il codice MATLAB realizzato per definire la geometria dello scaffold fabbricato tramite la tecnica PAM2, e le messe in tavola dei

Bibliografia

[1] Langer, Robert. "VacantiJP." Tissue engineering. Science260.5110 (1993): 920- 926.

[2] Gurtner, Geoffrey C., Matthew J. Callaghan, and Michael T. Longaker.

"Progress and potential for regenerative medicine."Annu. Rev. Med.58 (2007): 299-312.

[3] Gurtner, Geoffrey C., et al. "Wound repair and regeneration."Nature453.7193

(2008): 314.

[4] Griffith, Linda G., and Gail Naughton. "Tissue engineering--current challenges

and expanding opportunities." science295.5557 (2002): 1009-1014.

[5] Ahluwalia, Ciardelli e De Angelis “Approcci ingegeneristici per lo sviluppo di metodiche alternative alla sperimentazione in vivo.” Pàtron editore (2015). [6] Yu, Justine R., et al. "Current and Future Perspectives on Skin Tissue Engineering: Key Features of Biomedical Research, Translational Assessment, and Clinical Application." Advanced healthcare materials 8.5 (2019): 1801471.

[7] Francois, Elvis L., and Michael J. Yaszemski. "Preclinical Bone Repair Models

in Regenerative Medicine." Principles of Regenerative Medicine. Academic Press, 2019. 761-767.

[8] Kosik-Kozioł, Alicja, et al. "3D bioprinted hydrogel model incorporating β- tricalcium phosphate for calcified cartilage tissue engineering." Biofabrication 11.3 (2019): 035016.

[9] Paul, Alyssa M., et al. "Design of a Standardized in vitro Model of Skeletal

Muscle Regeneration For Implantable Fibrin Microthread Scaffolds." (2019). [10] Karami, Daniel, Nathan Richbourg, and Vassilios Sikavitsas. "Dynamic in vitro models for tumor tissue engineering." Cancer letters 449 (2019): 178-185.

[11] S.P. Pathi, C. Kowalczewski, R. Tadipatri, C. Fischbach, A Novel 3-D Mineralized Tumor Model to Study Breast Cancer Bone Metastasis, PLoS ONE, 5 (2010)

[12] H. Ma, C. Jiang, D. Zhai, Y. Luo, Y. Chen, F. Lv, Z. Yi, Y. Deng, J. Wang, J. Chang, C. Wu, A Bifunctional Biomaterial with Photothermal Effect for Tumor Therapy and Bone Regeneration, Advanced Functional Materials, 26 (2016) 1197- 1208.

[13] C.S. Szot, C.F. Buchanan, P. Gatenholm, M.N. Rylander, J.W. Freeman, Investigation of cancer cell behavior on nanofibrous scaffolds, Materials Science and Engineering: C, 31 (2011) 37-42.

[14] O. Hartman, C. Zhang, E.L. Adams, M.C. Farach-Carson, N.J. Petrelli, B.D. Chase, J.F. Rabolt, Biofunctionalization of electrospun PCL-based scaffolds with perlecan domain IV peptide to create a 3-D pharmacokinetic cancer model, Biomaterials, 31 (2010) 5700-5718.

[15] Elliott, Nelita T., and F. A. N. Yuan. "A review of three-dimensional in vitro tissue models for drug discovery and transport studies."Journal of pharmaceutical

sciences100.1 (2011): 59-74.

[16] Martins, Albino, Rui L. Reis, and Nuno M. Neves. "Micro/nano scaffolds for osteochondral tissue engineering."Osteochondral Tissue Engineering: Nanotechnology, Scaffolding-Related Developments and Translation(2018): 125- 139

[17] Hutmacher, Dietmar W. "Scaffolds in tissue engineering bone and cartilage."The Biomaterials: Silver Jubilee Compendium. Elsevier Science, 2000. 175-189.

[18] Lupuleasa, Dumitru, et al. "BIOCOMPATIBLE POLYMERS FOR 3D PRINTING."FARMACIA 66.5 (2018): 737-746.

[19] Gomes, Manuela E., et al. "Alternative tissue engineering scaffolds based on starch: processing methodologies, morphology, degradation and mechanical properties." Materials Science and Engineering: C 20.1-2 (2002): 19-26.

[20] 3D bioactive composite scaffolds for bone tissue engineering Gareth Turnbull, Jon Clarke, Fre de ric Picard, Philip Riches, Luanluan Jia, Fengxuan Han, Bin Li, Wenmiao Shu.

[21] Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491

[22] Fang TD, Salim A, Xia W, Nacamuli RP, Guccione S, Song HM, Carano RA, Filvaroff EH, Bednarski MD, Giaccia AJ, Longaker MT (2005) Angiogenesis is required for successful bone induction during distraction osteogenesis. J Bone Miner Res 20(7):1114–1124

[23] Kohane, Daniel S., and Robert Langer. "Polymeric biomaterials in tissue engineering."Pediatric research63.5 (2008): 487.

[24] Hollister, Scott J. "Porous scaffold design for tissue engineering." Nature materials 4.7 (2005): 518.

[25] Bajaj, Piyush, et al. "3D biofabrication strategies for tissue engineering and regenerative medicine."Annual review of biomedical engineering16 (2014): 247- 276.

[26] Chen, Fa-Ming, and Xiaohua Liu. "Advancing biomaterials of human origin for tissue engineering."Progress in polymer science53 (2016): 86-168.

[27] O'brien, Fergal J. "Biomaterials & scaffolds for tissue engineering."Materials today14.3 (2011): 88-95.

[28] Rezwan, Kurosh, et al. "Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering."Biomaterials27.18 (2006): 3413-3431.

[29] Renth, Amanda N., and Michael S. Detamore. "Leveraging “raw materials” as building blocks and bioactive signals in regenerative medicine."Tissue Engineering Part B: Reviews18.5 (2012): 341-362.

[30] Chung, Woo-Jae, et al. "Biomimetic self-templating supramolecular structures."Nature478.7369 (2011): 364.

[31] Stoppel, Whitney L., et al. "Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine."Annals of biomedical engineering43.3 (2015): 657-680.

[32] Yeung, P., et al. "Microencapsulation of human osteoarthritis chondrocytes in collagen microsphere-an in vitro model for osteoarthritis studies." Osteoarthritis and Cartilage 27 (2019): S426.

[33] Strassburg, Sandra, et al. "In vivo evaluation of an electrospun gelatin nonwoven mat for regeneration of epithelial tissues."Journal of Biomedical Materials Research Part A(2019).

[34] Arai, Daisuke, et al. "Development of a stent capable of the controlled release of basic fibroblast growth factor and argatroban to treat cerebral aneurysms: In vitro experiment and evaluation in a rabbit aneurysm model."Journal of Biomedical Materials Research Part B: Applied Biomaterials (2019)

[35] Dıaz-Caldero n, P.; Caballero, L.; Melo, F.; Enrione, J. Molecular Configuration of Gelatin–water Suspensions at Low Concentration. Food Hydrocolloids. 2014, 39, 171–179. DOI: 10.1016/j.foodhyd.2013.12.019.

[36] Massoumi, H.; Nourmohammadi, J.; Marvi, M. S.; Moztarzadeh, F. Comparative Study of the Properties of Sericin-gelatin Nanofibrous Wound Dressing Containing Halloysite Nanotubes Loaded with Zinc and Copper Ions. Int. J. Polym. Mater. Polym. Biomater. 2018, 1–12. DOI: 10.1080/ 00914037.2018.1534115.

[37] Duconseille, A.; Astruc, T.; Quintana, N.; Meersman, F.; Sante-Lhoutellier, V. Gelatin Structure and Composition Linked to Hard Capsule Dissolution: A Review. Food Hydrocolloids. 2015, 43, 360–376. DOI: 10.1016/ j.foodhyd.2014.06.006. [38] Wang, Xiaohong, et al. "Gelatin-based hydrogels for organ 3D bioprinting." Polymers 9.9 (2017): 401.

[39] Ranganathan, Sruthi, Kalimuthu Balagangadharan, and Nagarajan Selvamurugan. "Chitosan and gelatin-based electrospun fibers for bone tissue engineering."International journal of biological macromolecules(2019).

[40] Van Vlierberghe, Sandra, Peter Dubruel, and Etienne Schacht. "Biopolymer- based hydrogels as scaffolds for tissue engineering applications: a review."Biomacromolecules12.5 (2011): 1387-1408.

[41] Nichol, Jason W., et al. "Cell-laden microengineered gelatin methacrylate hydrogels."Biomaterials 31.21 (2010): 5536-5544

[42] Foox, Maytal, and Meital Zilberman. "Drug delivery from gelatin-based systems."Expert opinion on drug delivery12.9 (2015): 1547-1563.

[43] Van Den Bulcke, An I., et al. "Structural and rheological properties of methacrylamide modified gelatin hydrogels." Biomacromolecules 1.1 (2000): 31- 38.

[44] Hoffman, Allan S. "Hydrogels for biomedical applications." Advanced drug delivery reviews 64 (2012): 18-23.

[45] Caló, Enrica, and Vitaliy V. Khutoryanskiy. "Biomedical applications of hydrogels: A review of patents and commercial products." European Polymer Journal 65 (2015): 252-267.

[46] Chen, Guoping, Naoki Kawazoe, and Yoshihiro Ito. "Photo-crosslinkable hydrogels for tissue engineering applications." Photochemistry for Biomedical Applications. Springer, Singapore, 2018. 277-300.

[47] Zhao, Xin, et al. "Photocrosslinkable gelatin hydrogel for epidermal tissue engineering." Advanced healthcare materials5.1 (2016): 108-118.

[48] Karageorgiou, Vassilis, and David Kaplan. "Porosity of 3D biomaterial scaffolds and osteogenesis." Biomaterials 26.27 (2005): 5474-5491.

[49] Khademhosseini, Ali, et al. "Microscale technologies for tissue engineering." Advances In Tissue Engineering. 2008. 349-369.

[50] Fernández-Castaño Romera, Marcos, et al. "Mimicking active biopolymer networks with a synthetic hydrogel." Journal of the American Chemical Society 141.5 (2019): 1989-1997.

[51] Abouzeid, Ragab E., et al. "Biomimetic mineralization of three-dimensional printed alginate/TEMPO-oxidized cellulose nanofibril scaffolds for bone tissue engineering." Biomacromolecules 19.11 (2018): 4442-4452.

[52] Y. Liu, M.B. Chan-Park, A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture, Bio- materials 31 (2010) 1158e1170.

[53] P.E. Van den Steen, B. Dubois, I. Nelissen, P.M. Rudd, R.A. Dwek, G. Opdenakker, Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9), Crit. Rev. Biochem. Mol. Biol. 37 (2002) 375e536. [54] Klotz, Barbara J., et al. "Gelatin-methacryloyl hydrogels: towards

[55] Pepelanova, Iliyana, et al. "Gelatin-Methacryloyl (GelMA) hydrogels with defined degree of functionalization as a versatile toolkit for 3D cell culture and extrusion bioprinting." Bioengineering 5.3 (2018): 55.

[56] Yue, Kan, et al. "Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels." Biomaterials 73 (2015): 254-271

[57] H. Aubin, J.W. Nichol, C.B. Hutson, H. Bae, A.L. Sieminski, D.M. Cropek, et al., Directed 3D cell alignment and elongation in microengineered hydrogels, Biomaterials 31 (2010) 6941e6951

[58] A. Ovsianikov, S. Muehleder, J. Torgersen, Z. Li, X.-H. Qin, S. Van Vlierberghe, et al., Laser photofabrication of cell-containing hydrogel constructs, Lang- muir 30 (2014) 3787e3794.

[59] Lam, Tobias, et al. "Photopolymerizable gelatin and hyaluronic acid for stereolithographic 3D bioprinting of tissue-engineered cartilage." Journal of Biomedical Materials Research Part B: Applied Biomaterials (2019).

[60] Anada, Takahisa, et al. "Vascularized Bone-Mimetic Hydrogel Constructs by 3D Bioprinting to Promote Osteogenesis and Angiogenesis." International journal of molecular sciences 20.5 (2019): 1096. Da me per bioprinting

[61] Yue K, Trujillo-De Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73, 254–271 (2015).

[62] Athirasala, Avathamsa, et al. "A novel strategy to engineer pre-vascularized full-length dental pulp-like tissue constructs." Scientific reports 7.1 (2017): 3323. [63] Levato, Riccardo, et al. "The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells." Acta biomaterialia 61 (2017): 41-53.

[64] Fan, Lei, et al. "Directing induced pluripotent stem cell derived neural stem cell fate with a three-dimensional biomimetic hydrogel for spinal cord injury repair."ACS applied materials & interfaces10.21 (2018): 17742-17755.

[65] Sadeghi, Amir Hossein, et al. "Engineered 3D cardiac fibrotic tissue to study fibrotic remodeling."Advanced healthcare materials 6.11 (2017): 1601434.

[66] Zhang, Yu Shrike, et al. "Bioprinted thrombosis-on-a-chip."Lab on a Chip16.21 (2016): 4097-4105.

[67] Bhise NS, Manoharan V, Massa S et al. A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication 8(1), 014101 (2016).

[68] Erkoc P, Seker F, Bagci-Onder T, Kizilel S. Gelatin methacryloyl hydrogels in the ab- sence of a crosslinker as 3D glioblastoma multiforme (GBM)-mimetic microenviron- ment. Macromol. Biosci. 18(3) (2018).

[69] Assmann, Alexander, et al. "A highly adhesive and naturally derived sealant."Biomaterials 140 (2017): 115-127.

[70] Zhao, Xin, et al. "Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing."Acta biomaterialia49 (2017): 66-77.

[71] Luo, Zhimin, et al. "Biodegradable Gelatin Methacryloyl Microneedles for Transdermal Drug Delivery."Advanced healthcare materials 8.3 (2019): 1801054. [72] Shirahama, Hitomi, et al. "Precise tuning of facile one-pot gelatin methacryloyl (GelMA) synthesis."Scientific reports6 (2016): 31036.

[73] Hoch, Eva, et al. "Stiff gelatin hydrogels can be photo-chemically synthesized from low viscous gelatin solutions using molecularly functionalized gelatin with a high degree of methacrylation."Journal of Materials Science: Materials in Medicine23.11 (2012): 2607-2617.

[74] Lee, Bae Hoon, et al. "Efficient and controllable synthesis of highly substituted gelatin methacrylamide for mechanically stiff hydrogels."RSC Advances 5.128 (2015): 106094-106097.

[75] Kale, R. N., and A. N. Bajaj. "Ultraviolet spectrophotometric method for determination of gelatin crosslinking in the presence of amino groups."Journal of Young Pharmacists 2.1 (2010): 90-94.

[76] Choi, Jane Ru, et al. "Recent advances in photo-crosslinkable hydrogels for biomedical applications."BioTechniques66.1 (2019): 40-53.

[77] Hu, Junli, et al. "Visible light crosslinkable chitosan hydrogels for tissue engineering."Acta biomaterialia 8.5 (2012): 1730-1738

[78] Williams, Christopher G., et al. "Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation."Biomaterials 26.11 (2005): 1211-1218.

[79] Schuurman, Wouter, et al. "Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs."Macromolecular bioscience 13.5 (2013): 551-561.

[80] Chen, Ying-Chieh, et al. "Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels."Advanced functional materials 22.10 (2012): 2027-2039.

[81] Schuurman, Wouter, et al. "Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs."Macromolecular bioscience 13.5 (2013): 551-561.

[82] Athirasala, Avathamsa, et al. "A novel strategy to engineer pre-vascularized full-length dental pulp-like tissue constructs."Scientific reports 7.1 (2017): 3323. [83] Ermis, Antmen, and Hasirci. “Micro and Nanofabrication methods to control cell-substrate interactions and cell behavior: A review from the tissue engineering perspective”. Bioact Mater. 2018 Sep; 3(3): 355-369

[84] Moroni, Lorenzo, et al. "Biofabrication strategies for 3D in vitro models and regenerative medicine."Nat. Rev. Mater 3.5 (2018): 21-37.

[85] Zhu, Ning, and Xiongbiao Chen. "Biofabrication of tissue scaffolds."Advances

in biomaterials science and biomedical applications. IntechOpen, 2013.

[86] Moroni 2017 Moroni, Lorenzo, et al. "Biofabrication: a guide to technology and terminology."Trends in biotechnology36.4 (2018): 384-402.

[87] de Lima, Gabriel Goetten, et al. "Electrospinning of Hydrogels for Biomedical Applications."Hydrogels. Springer, Singapore, 2018. 219-258.

[88] Xue, Jiajia, et al. "Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications."Chemical reviews(2019).

[89] C. Bain and G. M. Whitesides, “Modeling organic surfaces with self assembled monolayers,” Angew. Chem., Int. Ed., vol. 28, pp. 506-512, 1989.

[90] Xia, Younan, and George M. Whitesides. "Soft lithography."Annual review of

materials science28.1 (1998): 153-184.

[91] Pimpin, Alongkorn, and Werayut Srituravanich. "Review on micro-and nanolithography techniques and their applications." Engineering Journal16.1 (2012): 37-56.

[92] Qin, Dong, Younan Xia, and George M. Whitesides. "Soft lithography for micro-and nanoscale patterning."Nature protocols 5.3 (2010): 491.

[93] Khademhosseini, Ali, et al. "Microscale technologies for tissue engineering and biology."Proceedings of the National Academy of Sciences103.8 (2006): 2480- 2487.

[94] Vozzi, Giovanni, et al. "Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering." Tissue Engineering 8.6 (2002): 1089-1098

[95] Mariani, Massimo, et al. "Characterization of tissue-engineered scaffolds microfabricated with PAM." Tissue