• Non ci sono risultati.

The role of biological monitoring in nanosafety

N/A
N/A
Protected

Academic year: 2021

Condividi "The role of biological monitoring in nanosafety"

Copied!
5
0
0

Testo completo

(1)

Original Citation:

The role of biological monitoring in nanosafety

Published version:

DOI:10.1016/j.nantod.2015.02.001

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available under a

Creative Commons license can be used according to the terms and conditions of said license. Use of all other works

requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

Availability:

This is a pre print version of the following article:

(2)

Availableonlineatwww.sciencedirect.com

ScienceDirect

jo u rn al h om ep a ge : w w w . e l s e v i e r . c o m / l o c a t e / n a n o t o d a y

NEWS

AND

OPINIONS

The

role

of

biological

monitoring

in

nano-safety

Enrico

Bergamaschi

a,∗

,

Craig

Poland

b,1

,

Irina

Guseva

Canu

c,2

,

Adriele

Prina-Mello

d,3

aDepartmentofClinicalandExperimentalMedicine,SectionofOccupational&EnvironmentalMedicine,

UniversityofParmaMedicalSchool,Parma,Italy

bInstituteofOccupationalMedicine,Edinburgh,UnitedKingdom cFrenchInstituteforPublicHealthSurveillance,SaintMaurice,France dSchoolofMedicineandCRANN,TrinityCollegeDublin,Ireland

Received28October2014;receivedinrevisedform5February2015;accepted9February2015

KEYWORDS Nanotechnology; Safety; Biomarkers; Biomonitoring; Riskassessment

Summary Theabilitytopredictandthenmitigatepotentialhealtheffectsiscrucialfor sus-tainabilityofnanotechnology,yetapproachestotestingmustevolvetoprovidebothspecificity andefficiencywhilstreducingtheburdenofanimaltesting.Toprovideriskassessmentwith adequateinformation,acomplementarystrategyrelyingontheuseofexposurebiomarkerscan beenvisagedaspartofaholisticapproachtosupportingeffectiverisksmanagementsystems. Candidatebiomarkersshouldbefurthervalidatedincontrolledhumanstudies.Thisarticle dis-cussesthemeaningandroleofbiomonitoringaskeycomponentofacomprehensivetoolboxof nanosafety.

©2015ElsevierLtd.Allrightsreserved.

Correspondingauthorat:DepartmentofClinicalandExperimentalMedicine,SectionofOccupational&EnvironmentalMedicine,

Uni-versityofParmaMedicalSchool,ViaGramsci,14,43100Parma,Italy.Tel.:+390521033096.

E-mailaddresses:enrico.bergamaschi@unipr.it(E.Bergamaschi),craig.poland@iom-world.org(C.Poland),i.guseva-canu@invs.sante.fr (I.GusevaCanu),prinamea@tcd.ie(A.Prina-Mello).

1 Address:ELEGI/ColtLaboratories,MRC/UniversityofEdinburghCentreforInflammationResearch,Queen’sMedicalResearchInstitute,

47LittleFranceCrescent,EdinburghEH164TJ,UnitedKingdom.Tel.:+441314498096.

2 Address:DépartementSantéTravail,InstitutdeVeilleSanitaire,12rueduVald’Osne,94415Saint-MauriceCedex,France.

Tel.:+330141795734;fax:+330141796788.

3 Address:InstituteofMolecularMedicine,TrinityCentreofHealthSciences,James’sStreet,St.James’sHospital,Dublin8,Ireland.

Tel.:+35318963259/3087.

http://dx.doi.org/10.1016/j.nantod.2015.02.001 1748-0132/©2015ElsevierLtd.Allrightsreserved.

(3)

ARTICLE IN PRESS

2 E.Bergamaschietal.

Nano-objects,includingtheiraggregatesand

agglomer-ates (NOAA) [1,2] are increasingly being brought to the

commercialmarketasakeytoindustrialinnovationinmany

fields.Increased availability anduse of NOAA brings with

it innovative applications but also the possibility of

per-sonal exposure with potentially unwanted health effects;

akeyconcernforthelong-termsustainabilityof

nanotech-nology.Engineerednanomaterials(ENM)havenotyetbeen

reportedtocausehealtheffectsinhumans;however,there

is accumulating evidence from animal studies supporting

theconcernthatexposuretosomenanomaterialscouldbe

harmful.As a result,ensuringthe safetyof nano-enabled

productsisseenasacrucialelementinfullexploitationof

thebenefitsofnanotechnology[3,4].

Theexistingframeworkforriskassessment(RA)ofENM

hassubstantiallimitationsinsupporting thehealth impact

assessmentofthisnewclassofchemicals. The‘‘Strategic

Research Agenda towards Safe and Sustainable

Nanoma-terial and Nanotechnology Innovations’’ [5] released by

the NanoSafety Cluster — an EU Commission initiative

to maximizethe synergies between the existing projects

addressing all aspects of nanosafety — recognizes that

theconventional RAframeworkmay failtofullyestimate

therisksfrom ENMdue tomethodologicallimitations and

knowledgeuncertainties.

AccurateassessmentofhealthriskofENMrequires

infor-mationontargetorgansofENMtoxicityandknowledgeof

relevant endpoints gathered from studies in which

expo-sures have been well characterized. Screening strategies

consistingof in vitro and in vivoassays have been

devel-opedforincreasingtherateofhazardidentification[6—8].

Tosupportthis,high-throughputandhigh-contentscreening

[7]alongwiththealternativeteststrategies[8]havebeen

envisaged aspowerfultools to expeditethe pace of

haz-ard identification and RA. The data generated by these

approaches will certainly improve safety assessment, yet

thecomplexandmulti-facetednatureofeventsoccurringat

thenano-biointerfacesmeansthatthefullreplacementof

invivoassessmentisnotyetpossible.Moreover,thenature

oftheseinteractions iscomplex,changeable andthe

bio-logical behaviour of ENM is not yet predictable solely on

thebasisofsize,shapeandsurfacechemistry,sincethese

inherentpropertiesaresubjecttochangeinresponseto

bio-logicalenvironment.Therefore,toxicologicaltestingshould

beseenasaspectrumwherethefurtherwegetfromhumans

byusingincreasinglysimplifiedmodels,morecautionshould

beexercisedintheinterpretationoffindings.Toovercome

uncertainties duetothe inherentlimitations of simplified

models,acomplementarystrategyfacingtheneedtoassess

the health impact of nanotechnology in those potentially

exposedis proposed [4,9]and akey component ofthis is

theapplicationofbiologicalmonitoring(BM).

BMisusedinoccupationalandenvironmentalhealthto

identifypotentialhazardsof newandemergingchemicals

andmonitor groups at risk of health outcomes. The main

objectives of BM [10] are: (i)assessment of individual or

groupexposure;(ii)identificationofearly(preferably

spe-cific)effectswhichareindicativeofanactualorpotential

health effects, and, ultimately, (iii) assessment of health

risktoexposedsubjects.

Biomarkers are measurable or observable parameters

that reveal designated events in a biological system and

areuseful in assessingthe effectsor exposure toharmful

substances,especiallywherethereareloworintermittent

levels of exposures, mixtures of toxicants that may act

synergistically, or exposure resulting in disease with long

latencyperiod.Sincebiomarkersareideallydirectlyrelated

totheadverseeffectswhichoneattemptstoprevent,the

use of BM representsan essential tool in health RA [10].

However,amajorchallengeisthespecificityofbiomarkers

alongwiththehealthsignificanceoftheobservedchanges.

Theissueof(nano)specificityofbiomarkersischallenging

becausethereductioninsizeofparticlestothenanoscale

isbelievedtodrivenewandunpredictableeffectsmeaning

thatarobustknowledgeoftoxicologicalpropertiesof

cer-tainnanoparticlesisnotyetapparentandmaynotbe

confi-dentlyinferredfrombulkparticlesofthesamecomposition.

However,evidencethusfarfromconventionalparticles,

sug-gestssimilarparadigmsofparticleandnanoparticlestoxicity

[11] suchas the roleof shape,surface area, presence of

reactivetransitionmetals.Thereforewithinthehierarchyof

biomarkerdevelopment(Fig.1),anefficientapproachisto

drawexploratoryandcandidatebiomarkersfromotherfields

of particle toxicology, in particular air pollution studies.

Thisisbecauseinrealexposurescenarios,ENMsharesome

characteristics withcombustion-derived ultrafineparticles

andthesesimilaritiescoulddrivetheknowledge-baseddata

toselect high valuebiomarkers [12].Biomarkersof

expo-sureandeffectarepotentiallyavailablebecauseapanelof

parametersindicativeoflocalorsystemicinflammationand

oxidativedamagehasbeenvalidatedinairpollutionstudies

[13,14].Limitedfieldstudieshaveappliedsuchbiomarkers

inexposedworkers[15—17]yetsomeofthesesufferfroma

lackofquantitativeexposureassessmentand

characteriza-tiontobothENMandenvironmentalbackgroundwhichlimit

thevalidationofbiomarkersagainstexposurelevels.

Aswithconventionalparticles,thenanoparticlesurface

forms the point of contact with cells therefore surface

areaandsurfacechemistryareimportantdeterminants of

nanoparticleinteractionwithbiologicalsystems[18,19]and

toxicity[20].Howeverthechemicalidentityofparticlescan

befurthermodifiedaftercontactwithbiologicalfluidssuch

aslungliningfluidorbloodduetobindingofbiomolecules,

suchasproteinsandlipids,toformacoronathatinteracts

withbiological systems[21]. Moreover,besides the

inher-entpropertiesofthematerial,thecapacityofENMtoact

as vectors for the transport of other toxic chemicals to

sensitive tissues (Trojan horse effects) should be

consid-ered [22]. Such alterations in surface characteristics are

an important experimental consideration yet toxicologists

oftentrytounderstandthetoxicologicalprofileofENMby

challenging their experimental systems with clean — but

not naked — particles which may not be truly

represen-tative of particle—cellinteractionsin a real-lifescenario.

Thislatterpointaddstotheartificialityoflaboratorybased

testingyet theissueoftrulyrepresentingreallife

scenar-ios is challenging. When considering the harmful effects

of particles inoccupational/environmental settings,these

are consistently associated witha multiplicity of factors,

including changes occurring at the surface of

nanoparti-cles.Agglomeration/aggregationofnanoparticlesincontact

withbiologicalmediarepresentacriticalissueinlaboratory

experimentsaffectingtheactualdosedeliveredtothe

(4)

Figure1 Layoutofbiomarkersresearchasconditionoftheresponsibledevelopmentofnanotechnologiesandsafetyofworkers exposedto engineerednanomaterials(ENM).With theadvancementoftheknowledgeabouttheinteractionbetweenENM and biologicalsystems,therelevanceofthetoxicologydatatohumansshouldbeconsidered.Advancesin‘‘-omic’’techniquesand systems toxicology can provideinformation onwhether specific biologicalpathways are activated/perturbed,thus identifying fingerprintsandnano-specificendpoints.Controlledhumanstudiesconsideringexposuredataareneededtoassessthevalidityof candidatebiomarkerswhichcanbefurtherappliedinobservationalstudiesaimedatassessingtheirpredictivitytowardsrelevant healthoutcomes.ValidatedbiomarkerswillenabletheprogressionofknowledgeaboutpotentialrisksassociatedtoENMandwill supporttheimplementationofconsistentoccupationallimitvaluesasakeycomponentofaneffectiverisksmanagementsystem.

This issue of particle modification and the subsequent

effects this mayhave ontoxicity/mode of action creates

further difficulties in isolating truly specific biomarkers.

Takenwiththeobservationthatthereisnostepchangein

toxicityat the 100nmnano-definition thresholdand little

supportfortrulynano-specificmodeofactionintoxicity,itis

evidentthatthereareconsiderablehurdlesin

nanoparticle-specific biomarkers. Candidate biomarkers of exposure

shouldconsidertheunusualpropertiesofENMascompared

to chemicals, such as the ability to translocate from the

routeofentryorperhapsevadeuptake,accumulatein

dif-ferentregionsofthebody,orchangetheirchemicalidentity

upontheinteractionwithbiomolecules[24].

Overall it is evident that predicting health effects

resulting from exposure to ENM is difficult due to their

heterogeneity as well as lack of available tests. Given

thisuncertainty,acomplementaryapproachof BMinhigh

exposure/riskpopulations(linkedwithexposuremonitoring)

couldprovide importantsupportand validationof

labora-tory analysis making the holisticuse of hypothesis driven

laboratoryanalysisandBMapragmaticsolution.

Anotherimportanttoolissystemstoxicology(ST)which

attempts to model the (patho)physiological interactions

withsubstancesusingcomputationaltools.Thiscouldalso

be a means for the selection of biomarkers by

provid-ing information on dynamic interactions with ENM and

by assessing whether specific biological pathways are

activated/perturbedbyspecificENM,thusidentifying

nano-specificfingerprints[25].

Due to the impracticability of tracking changes in

the chemical identity during their life-cycle, the RA of

specificnanoparticlescannotbebasedsolelyonlaboratory

scienceorpredictivemodelling,butshouldbesupportedby

observational studies in occupationally exposed workers.

Carrying out strictly controlled epidemiological studies is

recognized as the main requirement for the assessment

of biomarker validity whilst at the same time bridging

the gap between laboratory research and the real world

[9,26]. From epidemiological data, biologically plausible

statistical associations can befound that, takentogether

with experimental data, suggest causation or simple

association between exposure and health effects. Human

studies,although ethicallysensitive, areneededtoassess

the validity of candidate biomarkers which can be then

assessedfor theirability to predict health effects. These

validated biomarkers will advance the knowledge about

potentialrisksassociatedwithexposureand toassessthe

effectiveness of remediation strategies (e.g.

safety-by-design) [22,27]. While future studies should address the

(nano)specificity of biomarkers, the priority is to assess

whether alteration in biomarker baseline values occur in

groupsofexposedworkersascomparedtoacontrolgroup

andifthereis arelationship betweenmodification ofthe

biomarker(s) and adverse human health effects. Overall,

itis clearthat biomarkersand biologicalmonitoring need

tobeusedwidely inthetoolbox ofnanosafetytosupport

laboratorytestingandriskassessment.

Acknowledgements

This work was supported, in part, by EU FP7 project

Sanowork (Grantno. 280716) toE.B.and C.A.P.,whereas

A.P.M.wassupportedbytheEUFP7projectMULTIFUN(Grant

no.262943).

References

[1]ISO/TS 27687:2008, Nanotechnologies — Terminology and Definitions for Nano-objects — Nanoparticle, Nanofibre and Nanoplate,2008.

(5)

ARTICLE IN PRESS

4 E.Bergamaschietal.

[2]ISO/TC 229:2012, Nanotechnologies— Guidanceon Physico-chemicalCharacterizationofEngineeredNanoscaleMaterials forToxicologicAssessment,2012.

[3]OECD ENV/JM/MONO18, Co-operation on Risk Assessment: PrioritisationofImportantIssuesonRiskAssessmentof Man-ufacturedNanomaterials—FinalReport.SeriesontheSafety ofManufacturedNanomaterialsNo.38,2013.

[4]P.A. Schulte, C.L. Geraci, V. Murashov, E.D.Kuempel, R.D. Zumwalde,V.Castranova,M.D.Hoover, L.Hodson,K.F. Mar-tinez,J.Nanopart.Res.16(2014)2153.

[5]K. Savolainen, U. Backman, D.Brouwer, B. Fadeel, T. Fer-nandes,T.Kuhlbusch,R. Landsiedel,L. Lynch,I.Pylkkänen, Members of the NanoSafety Cluster, Nanosafety in Europe 2015—2025:TowardsSafeandSustainableNanomaterialsand NanotechnologyInnovations,FinnishInstituteofOccupational Health,Helsinki,Finland,2013.

[6]A. Nel,T.Xia,H. Meng,X.Wang,S.Lin,J.I.H. Zhang,Acc. Chem.Res.46(3)(2013)607—621.

[7]A.E.Nel,J.Intern.Med.274(6)(2013)561—577.

[8]A.Prina-Mello,B.M.Mohamed,N.K.Verma,N.Jain,Y.Volkov, in:N.A.Monteiro-Riviere,C.LangTran(Eds.),Nanotoxicology: ProgressTowardNanomedicine,seconded.,CRCPress,2014, pp.155—176.

[9]M.Riediker,M.K.Schubauer-Berigan,D.H.Brouwer,I.Nelissen, G.Koppen,E.Frijns,K.A.Clark,J.Hoeck,S.H.Liou,S.F.Ho, E.Bergamaschi,R.Gibson,J.Occup.Environ.Med.54(2012) 1214—1223.

[10]M.Manno,C.Viau,J.Cocker,C.Colosio,L.Lowry,A.Mutti,M. Nordberg,S.Wangh,Toxicol.Lett.192(2010)3—16.

[11]C.A. Donaldson, Curr. Opin. Biotechnol. 24 (4) (2013) 724—734.

[12]N.Li,A.Nel,J.Occup.Environ.Med.53(6)(2011)74—79. [13]E.Bergamaschi,M.Gulumian,J.Kanno,K.Savolainen,in:R.

Gupta(Ed.),BiomarkersinToxicology,ElsevierInc.,NewYork, 2014,pp.697—716.

[14]I.Iavicoli,V.Leso,M.Manno,P.A.Schulte,J.Nanopart.Res. 16(2014)2302.

[15]H.Y.Liao,Y.T.Chung,C.H.Lai,S.L.Wang,H.C.Chiang,L.A.Li, T.C.Tsou,W.F.Li,H.L.Lee,W.T.Wu,M.H.Lin,J.H.Hsu,J.J. Ho,C.J.Chen,T.S.Shih,C.C.Lin,S.H.Liou,Nanotoxicology (2013),http://dx.doi.org/10.3109/17435390.2013.858793. [16]W.T.Wu,H.Y.Liao,Y.T.Chung,W.F.Li,T.C.Tsou,M.H.Lin,

J.J. Ho, T.N. Wu, S.H. Liou, Int. J. Mol. Sci. 14 (2014), http://dx.doi.org/10.3390/ijms140x000x.

[17]R.Zhang,Y.Dail,X.Zhang,Y.Niu,T.Meng,Y.Li,H.Duan,P. Bin,M.Ye,X.Jia,M.Shen,S.Yu,X.Yang,W.Gao,Y.Zheng, Part. Fibre Toxicol. 11 (2014), http://dx.doi.org/10.1186/ s12989-014-0073-1.

[18]A. Shvedova, V.E. Kagan, B. Fadeel, Annu. Rev.Pharmacol. Toxicol.50(2010)63—88.

[19]D.Walczyk,F.B.Bombelli,M.P.Monopoli,I.Lynch,K.A. Daw-son,J.Am.Chem.Soc.132(2010)5761—5768.

[20]B. Fubini, M. Ghiazza, I. Fenoglio, Nanotoxicology4 (2010) 347—363.

[21]M.P.Monopoli,C.Aberg,A. Salvati,K.A.Dawson,Nat. Nan-otechnol.7(12)(2012)779—786.

[22]I. Lynch, C. Weiss, E. Valsami-Jones, Nano Today 9 (2014) 266—270,http://dx.doi.org/10.1016/j.nantod.2014.05.001. [23]G. DeLoid, J.M.Cohen, T. Darrah, R. Derk,L. Rojanasakul,

G. Pyrgiotakis,W. Wohlleben,P.Demokritou,Nat.Commun. 5(2014)3514.

[24]B.Fadeel,N.Feliu,C.Vogt,A.M.Abdelmonem,W.J.Parak, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5 (2013) 111—129.

[25]S.J. Sturla, A.R. Boobis, R.E. FitzGerald, J. Hoeng, R.J. Kavlock, K. Schirmer, M. Whelan, M.F. Wilks, M.C. Peitsch, Chem.Res.Toxicol.27(3)(2014)314—329.

[26]E.D.Kuempel,C.L.Geraci,P.A.Schulte,Ann.Occup.Hyg.56 (5)(2012)491—505.

[27]A.L.Costa,in:N.A.Monteiro-Riviere,C.LangTran(Eds.), Nan-otoxicology:ProgressTowardNanomedicine,seconded.,CRC Press,2014,pp.37—45.

Enrico Bergamaschi (MD,PhD) is Associate Professor of Occupational Medicine at Uni-versityofParmaMedicalSchool,Italy. Inves-tigator in international Research Projects dealingwiththedevelopmentandvalidation ofbiomarkersofexposure,internaldoseand earlyeffects ontargetorgansfrom xenobi-otics,heiscurrentlyinvolvedinstudiesonthe interactionsofnanomaterialswithbiological systemsandnano-safetyissues.MemberofEU NanoSafetyClusterandEU-USCommunityof Research(CoR).PartnerintheFP7Projects‘‘ReferenceMethodsfor ManagingtheRiskofEngineeredNanoparticles’’(MaRiNa)and‘‘Safe nano-workersexposurescenario’’(Sanowork).Author/co-authorof 100fullpapersininternationaljournals.

Dr.CraigA.Poland(BSc,MSc,PhD,MSB) is SeniorResearchToxicologistwithinthe Insti-tuteofOccupationalMedicineandELEGI/Colt Laboratories, MRC/University of Edinburgh Centre for Inflammation Research. He has researchinterestsinunderstandingthe inter-actions between particles and biological systemsandhowthesecanleadtodisease. Hehasworkedforthelast12yearsin respi-ratoryresearchandhisresearchoverthelast 8yearshasfocusedonthephysico-chemical attributes of nanoparticles,in particularmorphology, which can affectthetoxicityoftheseparticlesandhowadverseeffectscan beprevented.

Dr.IrinaGusevaCanuisaSenior Epidemiol-ogistattheFrenchInstituteforPublicHealth Surveillance(InVS)andascientificexpertat theFrench Agencyfor Food,Environmental and Occupational Health & Safety, at the NationalObservatoryforMicroand Nanotech-nologies,andattheInternationalAgencyfor Research on Cancer. At the InVS she leads the EpiNano project aimed at creating an exposureregistryandaprospectivecohortof workersexposedtoengineerednanomaterials inFrance.Shehasstudiedcancerriskfollowingoccupational expo-sureto ionizing radiation and workedon retrospective exposure assessmentmethods,multi-exposuresand internalcontamination issuesintheFrenchnuclearindustry.

AdrielePrina-MelloisanAMBERandCRANN Investigator,aSeniorResearchFellowofthe SchoolofMedicineandapart-timelectureat TrinityCollegeDublin(Ireland),aNanosafety ClustermemberandchairofToxicologyand Characterizationworkinggroupofthe Euro-peanTechnologyPlatformofNanomedicine. He is involvedin translatingclinically rele-vant researchbetween University,Research Hospital and Industry partners for future applicationsinthe medicineand nanotech-nology industry. Currently involved in EU FP7 funded projects: NAMDIATREAM,MULTIFUN,QualityNano,NANoREG,andAMCARE.He haspublishedmorethan50articlesinnanomedicine, nanotoxicol-ogy,nanomaterialsandnanotechnologyresearcharea.

Riferimenti

Documenti correlati

La mia ricerca si propone di analizzare i riti che Gabriele D’Annunzio ricrea nelle sue opere, le descrizioni e i racconti collegati a questi riti e come sviluppano nei suoi

Alla luce delle sopra indicate osservazioni, si ritiene opportuno esaminare il fenomeno della violenza di genere che la donna straniera subisce nel paese di arrivo, ovvero in Italia,

In comparison to SNe 1993J and 2013df, SN 2011fu presents a longer cooling phase after the first peak, and a longer rise time to secondary peak than the rest of the ob- jects,

[r]

Il coinvolgimento polmonare in corso di leptospirosi è sempre stato uno dei possibili sviluppi della malattia; la manifestazione principale e tipica della leptospirosi

As a consequence SPs can become the dominant ionization source in the midplane of the disk (e.g. for the low CR case). In the upper layers always X-rays domi- nate as ζ SP < ζ X

The experimental tests have been conducted at an innovative pilot plant, designed acting as an overmoded resonator at the frequencies of interest, where the

Lo sperimentatore e/o il farmacista od altra persona competente, designato dallo sperimentatore, deve conservare la documentazione relativa alle consegne e