• Non ci sono risultati.

Evaluate ∞ X n=1 ζ(2n) n(n + 1) in closed form

N/A
N/A
Protected

Academic year: 2021

Condividi "Evaluate ∞ X n=1 ζ(2n) n(n + 1) in closed form"

Copied!
1
0
0

Testo completo

(1)

Problem 11400

(American Mathematical Monthly, Vol.115, December 2008) Proposed by P. Bracken (USA).

Letζ be the Riemann zeta function. Evaluate

X

n=1

ζ(2n) n(n + 1) in closed form.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

For 0 ≤ x < 1

X

n=1

ζ(2n) n xn=

X

n=1

1 n

X

k=1

√ x k

2n

=

X

k=1

X

n=1

1 n

√ x k

2n

= − log

Y

k=1

1 −

√ x k

2!

= − log sin(π√ x) π√

x

 .

Hence, because of uniform convergence of the series, we get the desired closed form

X

n=1

ζ(2n) n(n + 1) =

Z 1

0

X

n=1

ζ(2n) n xn = −

Z 1

0

log sin(π√ x) π√

x

 dx

= −

Z 1

0

log sin(π√

x) dx + Z 1

0

log (π) dx +1 2

Z 1

0

log (x) dx

= − 2 π2

Z π 0

log (sin(t)) t dt + log(π) −1 2

= log(2) + log(π) −1

2 = log(2π) − 1

2 ≈ 1.337877.

Note that the nontrivial integral can be computed by exploiting symmetry:

I = Z π

0

log (sin(t)) t dt = Z π

0

log (sin(π − t)) (π − t) dt = π Z π

0

log (sin(t)) dt − I and

J =

Z π 0

log (sin(t)) dt = Z π

0

log (2 sin(t/2) cos(t/2)) dt

= π log(2) + 2 Z π/2

0

log sin(t) dt + 2 Z π/2

0

log cos(t) dt

= π log(2) + 2 Z π/2

0

log sin(t) dt + 2 Z π/2

0

log sin(π/2 − t) dt = π log(2) + 2J

therefore J = −π log(2) and I = πJ/2 = −π2log(2)/2. 

Riferimenti