• Non ci sono risultati.

0 ln |1 − x| x1+1/k dx

N/A
N/A
Protected

Academic year: 2021

Condividi "0 ln |1 − x| x1+1/k dx"

Copied!
1
0
0

Testo completo

(1)

Problem 11926

(American Mathematical Monthly, Vol.123, August-September 2016) Proposed by O. Furdui (Romania).

Letk be an integer, k ≥ 2. Find

Ik :=

Z +∞

0

ln |1 − x|

x1+1/k dx.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. We have that Z +∞

1

ln |1 − x|

x1+1/k dx = Z +∞

1

ln(x − 1) x1+1/k dx =

Z 0 1

ln(1/t − 1) (1/t)1+1/k d(1/t)

= Z 1

0

ln(1 − t) t1−1/k dt −

Z 1 0

ln t t1−1/k dt.

Now

Z 1 0

ln t

t1−1/k dt =h

−k2t1/k+ kt1/kln ti1

t=0+= −k2. Moreover if α ∈ (0, 2) then

− Z 1

0

ln(1 − t) tα dt =

Z 1 0

P

j≥1 tj

j

tα dt =X

j≥1

1 j

Z 1 0

tj−α dt =X

j≥1

1 j(j + 1 − α),

where we can swap the sum with the integral by monotone convergence theorem: for t ∈ (0, 1) and for any N ≥ 1,

0 ≤

N

X

j=1

tj

j ≤ − ln(1 − t) and t−αP

j≥1 tj

j = −ln(1−t)tα is integrable on (0, 1). Hence

Ik = k2+ Z 1

0

ln(1 − t) t1−1/k dt +

Z 1 0

ln(1 − t) t1+1/k dt

= k2−X

j≥1

1

j(j +1k)−X

j≥1

1 j(j −1k)

= k2+ 2X

j≥1

1

1

k2 − j2 = kπ cot(π/k) where in the last step we used the known identity

π cot(πz) =1

z + 2zX

j≥1

1 z2− j2

which holds for z 6∈ Z. 

Riferimenti