• Non ci sono risultati.

PROVA D’ESAME DI MATEMATICA Corso di Laurea Triennale in Scienze Biologiche

N/A
N/A
Protected

Academic year: 2021

Condividi "PROVA D’ESAME DI MATEMATICA Corso di Laurea Triennale in Scienze Biologiche"

Copied!
4
0
0

Testo completo

(1)

PROVA D’ESAME DI MATEMATICA Corso di Laurea Triennale in Scienze Biologiche

17 Gennaio, 2018 COGNOME (in stampatello):

NOME (in stampatello):

MATRICOLA (numero):

NOTA: Ciascuna soluzione deve essere riportata e contenuta nello spazio sot- tostante il testo d’esame. Tutte le soluzioni devono essere adeguatamente motivate dai necessari passaggi ai fini della valutazione.

1 Matrici e Algebra Lineare

Si consideri la matrice

A =  6 4 4 0

 .

Calcolare: (a) gli autovalori di A; (b) gli autovettori di A.

1

(2)

2 Massimi e Minimi di Funzione

Si consideri la funzione

f (x) = x ln

2

x .

(a) Determinare il dominio ed eventuali asintoti orizzontali e verticali. (b) Calco- lare derivata prima e seconda e stabilire l’esistenza di eventuali punti di massimo e minimo, determinandone le coordinate. (c) Disegnare il grafico della funzione.

2

(3)

3 Gradiente e Integrali

(a) Calcolare il gradiente ∇f (x, y) della funzione f (x, y) = e

−y

(x + ln x cos y) ; (b) determinare il valore degli integrali

I

1

= Z

3 sin

2

x dx , I

2

= Z

2

0

x(x

2

+ 1)

1/3

dx .

3

(4)

4 Equazioni differenziali ordinarie

(a) Determinare la soluzione generale y = y(x) dell’equazione differenziale ordi- naria

dy

dx = x + y

2

x ;

(b) determinare la soluzione particolare per la condizione iniziale x = 0, y(0) = 1.

4

Riferimenti

Documenti correlati

(Non ci sono altri punti di massimo o minimo locale per f , perch´ e, per il teorema di Fermat, in tali punti la derivata si deve annullare).. 1.(c) In un intorno destro di 0 si ha xe

Per quanto provato sopra, la funzione non ammette punti di massimo o di minimo relativo interni a K, tali punti cadranno quindi sulla frontiera ∂K... Per determinare le soluzioni

NOTA: Ciascuna soluzione deve essere riportata e contenuta nello spazio sot- tostante il testo d’esame.. (b) Stabilire l’esistenza di eventuali punti di massimo e minimo

(b) Calco- lare derivata prima e seconda e stabilire l’esistenza di eventuali punti di massimo e minimo, determinandone

(b) Calco- lare derivata prima e seconda e stabilire l’esistenza di eventuali punti di massimo e minimo, determinandone

(b) Calco- lare derivata prima e seconda e stabilire l’esistenza di eventuali punti di massimo e minimo, determinandone

NOTA: Ciascuna soluzione deve essere riportata e contenuta nello spazio sot- tostante il testo d’esame.. (b) Deter- minare le coordinate dei punti di massimo e

Regolamento per lo svolgimento della prova finale A.A. A conclusione del periodo di stage e di internato lo studente elabora una relazione finale che non deve superare le 30