• Non ci sono risultati.

SCRIVERE IN MODO CHIARO GIUSTIFICARE BREVEMENTE I PROCEDIMENTI SOSTITUIRE I VALORI NUMERICI SOLO ALLA FINE NON DIMENTICARE LE UNITA` DI MISURA

N/A
N/A
Protected

Academic year: 2021

Condividi "SCRIVERE IN MODO CHIARO GIUSTIFICARE BREVEMENTE I PROCEDIMENTI SOSTITUIRE I VALORI NUMERICI SOLO ALLA FINE NON DIMENTICARE LE UNITA` DI MISURA"

Copied!
5
0
0

Testo completo

(1)

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova di FISICA del 21 Settembre 2004

1) Un bambino, partendo da fermo, scivola senza attrito da un’ altezza h=3 m lungo uno scivolo curvo.

Al termine dello scivolo il bambino viene lanciato in acqua da un’altezza h/5, con un angolo di inclinazione θ=300 rispetto all’orizzontale, come mostrato in figura.

Si calcoli:

a) la velocità del bambino, componente x ed y, al momento del lancio in acqua.

b) la massima quota y raggiunta in aria dal bambino dopo il lancio dallo scivolo.

2) Nell'origine O degli assi (x,y) è fissata una particella carica positivamente con carica +Q = 2 10-8 C.

Una carica di prova positiva +q = 4 10-16 C, si sposta dal punto A=(2m, 1m) al punto B=(4m, 1m).

Si calcoli:

a) il modulo del campo elettrostatico nel punto A;

b) il lavoro compiuto dalla forza elettrostatica durante lo spostamento della particella da A a B;

c) SOLO PER I QUINQUENNALI:

il flusso del campo elettrostatico attraverso una superficie sferica di raggio pari a 0.1 m e centro O.

(Nota: ε0 = 8.85 10-12 C2/Nm2)

3) Una sferetta cava di raggio r = 4 cm e massa m = 10 g viene mantenuta totalmente immersa in un recipiente pieno di acqua, nel punto A ad una profondità h = 50 cm.

a) si calcoli la forza che occorre esercitare per mantenerla ferma in A;

b) si determini in quale direzione e verso si muoverebbe la sferetta qualora venisse lasciata libera di muoversi dal punto A in cui si trova, e si calcoli inoltre la velocità che avrebbe qualora raggiungesse il punto B, che dista da A di d = 10 cm.

(Nota: Le posizioni A e B sono quelle del centro della sferetta. Supporre l'acqua un fluido ideale) 4) Un gas perfetto monoatomico (n=2 moli) passa dallo stato iniziale A a quello finale D compiendo le

trasformazioni reversibili AB (isocora con aumento di pressione), BC (isoterma) e CD (isobara).

Inoltre in A è pA = 6 10 3 N/m2 , VA = 1 m3 , pC=pA =pD , VC=3 VA e VD=4VC.

a) Si rappresenti nel diagramma (p,V) la trasformazione ABCD e si calcoli il lavoro compiuto dal gas nella trasformazione ABCD;

b) Si calcoli la variazione di energia interna del gas tra lo stato iniziale A e quello finale D.

(Nota: R= 8.31 J/Kmole =0.082 l atmo /Kmole)

SCRIVERE IN MODO CHIARO

GIUSTIFICARE BREVEMENTE I PROCEDIMENTI SOSTITUIRE I VALORI NUMERICI SOLO ALLA FINE

NON DIMENTICARE LE UNITA` DI MISURA

(2)

SOLUZIONE ESERCIZIO 1

a) La velocità di lancio al termine dello scivolo può essere determinata applicando il principio di conservazione dell’energia (energia cinetica + energia potenziale gravitazionale) tra il punto iniziale a quota h ed il punto finale a quota h/5:

Il modulo v della velocità al momento del lancio dallo scivolo è quindi pari a:

s m m

s m gh

h g

v (9.8 / ) 3 6.9 /

5 8 5

) 8 5 (4

2 = = 2 ⋅ ≈

=

Le componenti x ed y della velocità al momento del lancio, sono quindi:

s m s

m s

m v

v

s m s m s

m v

v

y x

/ 5 . 3 ) / 9 . 6 2( ) 1 30 )(sin / 9 . 6 ( sin

/ 6 ) / 9 . 6 2 ( ) 3 30 )(cos / 9 . 6 ( cos

0 0

=

=

=

=

=

= θ

θ

b) La massima altezza raggiunta dal bambino dopo il lancio può essere nuovamente ricavata applicando il principio di conservazione dell’energia tra il punto iniziale (a quota h/5) ed il punto di quota massima y, in corrispondenza al quale il bambino possiede solo velocità lungo l’asse x e non y:

Esplicito ora nella espressione precedente le componenti in x ed y della velocità iniziale e finale, tenendo presente che nel punto finale (a quota y) la velocità lungo y è nulla, mentre la componente in x è la medesima del punto iniziale, trattandosi di un moto parabolico (tipo proiettile) in cui l’unica accelerazione che compare è quella gravitazionale g lungo y:

m m s

s m m v h

y g

h mgy mg mv

mgy v

h m mg v

v m

y y

x y

x

2 . 5 1 ) 3 / 5 . 3 )( / 8 . 9 ( 2

1 5

2 1

5 2

1

) 0 2 (

1 ) 5

2 ( 1

2 2

2 2

2 2

2

≈ +

= +

=

= +

+ +

= +

+ mgh mv

mg h mv mgh

U K U K

E E

fin fin in in

fin in

5 4 2

1

5 2

0 1

2

2

=

+

= +

+

= +

=

mgy h mv

mg mv

U K U K

fin in

fin fin in in

+

= +

+

= +

2 2

2 1 5 2

1

(3)

Alternativamente, la quota massima y, raggiunta in volo dal bambino, può essere ricavata utilizzando le equazioni relative al moto del proiettile:

m m s

m s m h

g 1.2

5 3 / 8 . 9 2

) / 5 . 3 ( 5 2

sin h/5 v

h

y 2

2 2 2

max + ≈

= × +

= +

= θ

ove con

g h v

2 sin2

2 max

= θ si indica l’altezza massima raggiunta nel moto in aria, parabolico, calcolata rispetto alla quota h/5 di partenza.

SOLUZIONE ESERCIZIO 2

a) Il campo elettrostatico E è generato dalla carica +Q, sorgente di campo.

Il modulo di E nel punto A di coordinate (2m,1m) è dato da:

C

N C

N OA

Q OA

k Q

E e 36

) 1 4 (

10 10 2

) 9 ( 4

1 )

( 2

8 9

2 0

2 =

+

× ×

=

=

=

πε r

b) Il lavoro L compiuto dalla forza elettrostatica per spostare la carica di prova +q da A a B è uguale ed opposto alla variazione di energia potenziale elettrostatica U fra i punti A e B:

J J

J OB J Qq OA

OB Qq OA

OB k k Qq OA k Qq

B U A U U L

e e

e

15 15

15

16 8

9 0

10 8 . 14 85 10

23 . 2 12 . 72 4 17 10

5 5 72 17

1 16

1 1 4 ) 1 10 4 ( ) 10 2 ( ) 10 9 1 ( 1 4

1

1 1 )

( ) (

) ( ) (

×

=

×



 

 −

×

=

×



 −

×

=



 

− +

× +

×

×

×

×

×

=



 

 −

=



 

 −

=

=

=

=

πε

c) SOLO PER I QUINQUENNALI:

In base al Teorema di Gauss, il flusso del campo elettrico E attraverso una superficie chiusa qualsiasi dipende solo dalla carica elettrica contenuta all’interno della superficie stessa. In questo caso tale carica è data dalla carica sorgente Q:

C

Nm C

Nm C E Q

2 4 2

2 12 8

0

10 23 . 10 0

85 . 8

10 ) 2

( = ×

×

= ×

=

Φ

ε v

(4)

SOLUZIONE ESERCIZIO 3

a) La sferetta si mantiene ferma in A se la risultante delle forze agenti su di essa è nulla:

Frnet =Frapp +Frg +FrA =0

ove Fg ,FA ed Fap ,indicano rispettivamente la forza peso, la spinta di Archimede e la forza che si deve applicare per mantenere la sferetta in equilibrio.

Proiettando l’equazione precedente lungo l’asse y si ottiene:

FappFg +FA =0 ⇒ Fapp =FAFg ove:

N s

m kg

mg F

N s

m m m

g kg r F

g

O H A

098 . 0 ) / 8 . 9 ( ) 10 10 (

63 . 2 ) / 8 . 9 ( ) 10 4 3 ( 10 4

3 4

2 3

2 3

2 3

3 3

2

=

×

×

=

=

=

×



 

 × ×

=



 

= 

π

π ρ

Si ottiene quindi che la forza applicata ha modulo Fapp = FAFg ≈ 2.53N

ed è diretta verso il basso, ossia in verso opposto alla spinta di Archimede.

b) Qualora sulla sferetta non venisse applicata alcuna forza esterna, la risultante delle forza agenti su di essa sarebbe data da:

Frnet Frg FrA +

=

Proiettando l’equazione precedente sull’asse y si ottiene che tale forza ha modulo Fnet =−Fg +FA =2.53N

ed è diretta verso l’alto. La sferetta è quindi soggetta ad un moto uniformemente accelerato.

La velocità vf posseduta nel punto B, ad una distanza d da A (lungo la verticale), può essere determinata applicando il teorema di equivalenza fra lavoro (svolto in questo caso dalla forza costante Fnet) e variazione di energia cinetica:

2 2 2 2

2 0 1 2

1 2

1 2

1

f f

i f

netd mv mv mv mv

F K L

=

=

=

=

da cui si ottiene:

m s

kg m N

m d

vf Fnet 7.1 /

10 10

10 10 53 . 2 2 2

3 2

× ≈

×

×

= ×

=

Alternativamente, a partire da una delle equazioni relative al moto uniformemente accelerato:

s m m d

v F

m d ad F

v v

net f

net

f i

/ 1 . 7 2

2 0

2 2

2

=

+

= +

=

(5)

SOLUZIONE ESERCIZIO 4 a) Nel piano pV la trasformazione ha il seguente andamento:

Il lavoro fatto dal gas è pari all’area sottesa sotto la curva della trasformazione:

= = =

=

=

+ +

=

C

B B

C C C

C B C C

BC B AB

CD BC AB tot

V nRT V V

nRT dV V dV

pdV nRT L

L

L L L L

ln 0

Ricavo la temperatura TC dellacurva isoterma applicando l’equazione dei gas perfetti al punto C,

nR V

TC = pC C , da cui segue che il lavoro relativo alla trasformazione BC è pari a :

J m m

N

V V p

V V V p

V nR

V nR p V nRT V

L A A

A A C C B C C C B

C C BC

3 3

3

3 ) (1 )ln3 19.77 10

10 6 ( 3

3 ln 3 3

ln ln

ln

×

=

×

×

×

×

=

=

=

=

=

=

Il lavoro relativo alla trasformazione CD è invece pari a:

m J

m V N

p V p V p

V V p V V p L

A A A A C A

C C A C D C CD

3 3

3

3 ) (1 ) 54 10

10 6 ( 9 9

3 3 3

) 4

( ) (

×

=

×

×

×

×

=

=

×

=

=

=

=

=

Il lavoro totale è quindi:

Ltot =LAB +LBC +LCD =LBC +LCD =19.77×103J +54×103J =73.77×103J

c) La variazione di energia interna del sistema fra i punti A e D dipende solo dalla temperatura del sistema in A e D, secondo la relazione:

J m m

N

V p V

p V p

V p V p

nR V p nR

V R p n T T nc T nc E

A A A

A A A A

A D D

A A D D A

D V V

3 3

2

3 ) (1 ) 99 10

10 6 2 ( 33

2 11 ) 3 3

4 2( ) 3 2(

3

2 ) 3 (

×

=

×

×

×

=

=

×

=

×

=

=

=



 

 −

=

=

=

p

V

VA VD

A C D

VC

pB

pA

B

Riferimenti

Documenti correlati

La presente Guida nasce dall’esigenza di avvicinare gli Utenti al Sistema Agenziale, agevolando la ricerca degli indirizzi e dei recapiti telefonici, di telefax, di posta

Si introduce la possibilità di prevedere agevolazioni fiscali in favore dei soggetti concessionari, al fine di realizzare nuove infrastrutture autostradali con il sistema del

dell’autotrasporto merci. Entro trenta giorni dalla data di entrata in vigore della presente legge, con decreto del Ministro delle infrastrutture e dei trasporti, di concerto con

32.Quando diverranno pienamente operative le misure riguardanti il personale della pubblica amministrazione (mobilità obbligatoria del personale; lavoro part-time;

12.00 - 13.00 Analisi del caso e approfondimenti (Tavola rotonda) Vincenzo Crupi, Fabrizio Elia, Pier Riccardo Rossi, Franco Floris, Vittoriano Petracchini, Franco Lupano.

Il est bien évident que la technique de prise de vues et de son pour la télé- vision bénéficiera plus encore que la production cinématographique propre- ment dite de toutes

These are power rails that are used to supply a common voltage (say +5V or +12V ) and a common ground to the circuits in the main part of the board.. Between the power rails are

[r]

Nel sistema in figura, la massa M della sbarra, la quale è lunga L, è maggiore della massa m della pallina, la quale ha un’apertura che le permette di scivolare sulla corda, con

b) si calcoli la quantità di calore scambiata dal gas nell’intero ciclo. SOSTITUIRE I VALORI NUMERICI SOLO ALLA FINE. NON SCORDARE LE UNITA` DI MISURA. Testi, soluzioni ed

b) la densità del fluido. SOSTITUIRE I VALORI NUMERICI SOLO ALLA FINE. NON SCORDARE LE UNITA` DI MISURA. Testi, soluzioni ed esiti alla pagina: www.mi.infn.it/~sleoni.. a)

SOSTITUIRE I VALORI NUMERICI SOLO ALLA FINE.. NON SCORDARE LE UNITA` DI

Il corpo, lasciato libero nel punto A, scorre su un piano orizzontale privo di attrito e, giunto in B, continua a muoversi lungo una guida semicircolare di raggio R = 1.0 m,

monoatomico e con quello di un ciclo di Carnot che lavori tra la temperatura minima e quella massima del ciclo. SCRIVERE IN MODO CHIARO. SOSTITUIRE I VALORI NUMERICI SOLO ALLA FINE.

monoatomico e con quello di un ciclo di Carnot che lavori tra la temperatura minima e quella massima del ciclo. SCRIVERE IN MODO CHIARO. SOSTITUIRE I VALORI NUMERICI SOLO ALLA FINE.

a) Il modulo della velocità della carica negativa B b) L’energia totale del sistema delle due cariche. SOSTITUIRE I VALORI NUMERICI SOLO ALLA FINE. NON SCORDARE LE UNITA` DI

Nella regione di spazio successiva (dopo il punto D) il campo elettrico è nullo; esiste invece un campo di induzione magnetica B costante, uniforme, perpendicolare al piano del

a) la velocità della sferetta quando ripasserà per il punto A, dopo essere stata lasciata libera di muoversi. Si precisi se la quantità di calore è assorbita o ceduta. b) Si calcoli

A quale altezza bisogna fissare la lampada perchè un oggetto che si trova sull'orlo della tavola sia illuminato nel modo migliore?. (L'illuminazione è direttamente proporzionale

[r]

Si determini una parametrizzazione regolare di S e se ne calcoli la prima forma fondamentale.. Si determini la curvatura Gaussiana di S in

③ Dove si trovano gli animali?. Scrivi

1b) Si scrivano le equazioni fondamentali dell’Elettrodinamica in forma covariante a vista. Si verifichi che l’equazione di Lorentz in forma covariante a vista ` e