• Non ci sono risultati.

QUANTITATIVE METHODS for ECONOMIC APPLICATIONS MATHEMATICS for ECONOMIC APPLICATIONS TASK 13/1/2021

N/A
N/A
Protected

Academic year: 2021

Condividi "QUANTITATIVE METHODS for ECONOMIC APPLICATIONS MATHEMATICS for ECONOMIC APPLICATIONS TASK 13/1/2021"

Copied!
6
0
0

Testo completo

(1)

QUANTITATIVE METHODS for ECONOMIC APPLICATIONS MATHEMATICS for ECONOMIC APPLICATIONS

TASK 13/1/2021

I M 1) If / œ / $  3 , find .D

#

D

 

$

Applying the definition of complex exponential: /B3C œ /BcosC  3senC and sinceÀ

/ œ / $  3 œ /  3 œ /  3 À

# # # ' '

$ " "" ""

D

   

$ " "

$ $

cos 1 sen 1 we get / œ / D œ "  3""

$ '

D "$3""'1 and so 1 .

I M 2) Given the vectors —" œ "ß !ß  #ß # , —# œ #ß "ß  "ß #  and —$ œ "ß #ß %ß 5 , check, depending on the parameter , when they are linearly independent.5

We solve the problem by calculating the rank of the matrix Œ œ .

" !  # #

# "  " #

" # % 5

 

 

 

 

 

 

 

 

 

 

 

 

If the vectors are linearly independent, the rank must be equal to ; if, on the other hand, the$ vectors are linearly dependent, the rank must be less than .$

Since " ! , the rank is at least equal to .

# " œ " Á ! #

By elementary operations on the rows V Ã V  #V# # " , V Ã V  V$ $ ", we getÀ

   

   

   

   

   

   

   

   

   

   

   

   

" !  # # " !  # #

# "  " # ! " $  #

" # % 5 ! # ' 5  #

Ä Þ

By elementary operations on the rows V Ã V  #V$ $ #, we getÀ

   

   

   

   

   

   

   

   

   

   

   

   

" !  # # " !  # #

! " $  # ! " $  #

! # ' 5  # ! ! ! 5  #

Ä Þ

Therefore, if 5 Á  # the rank is equal to and the vectors are linearly independent, if inste-$ ad 5 œ  # the rank is equal to and the vectors are dependent.#

I M 3) Determine the only value of the parameter for which the matrix 5 is dia-

" # $

! 5 #

! ! "

 

 

 

 

 

 

 

 

 

 

 

 

gonalizable.

From - ˆœ ! we get:

 

 

 

 

 

" # $     

! 5 #

! ! "

" 5 "

   œ ! œ œ "ß œ 5

-

-

-

- - - -

œ   Þ So " # $ Þ

(2)

If 5 œ " we get 7 œ $ and  " † œ and since # $ œ % Á !, it is

! #

+"  

 

 

 

 

 

   

 ˆ

! # $

! ! #

! ! !

Rank " †ˆœ # ß so 7 œ $  # œ "  7 œ $1" +" and the matrix is not diagonalizable.

If 5 Á " it is 7 œ # and  " † œ à if # $ œ (  $5 œ !

#

+"  

 

 

 

 

 

   

 ˆ

! # $

! 5 #

!  "! ! 5

 "

then Rank " †ˆœ " ß so 7 œ $  " œ # œ 71" +" and the matrix is diagonalizable.

If 5 Á ( then Á !, Rank  " † œ # ß so 7 œ $  # œ "  7 and the

$

# $

5  " #  ˆ 1" +"

matrix is not diagonalizable. Therefore the only value of the parameter for which the matrix5 is diagonalizable is 5 œ (Þ

$

I M 4) Consider the linear map 0 À Ä , œ † whith œ .

"  " 7 "

! # " 5

" " #5 7

%$ ˜  — 

 

 

 

 

 

 

 

 

 

 

 

 

Since 0 "ß "ß "ß " œ %ß &ß *   , determine the values of the parameters and and then find7 5 the dimensions of the Kernel and of the Image of this linear map.

From 0 "ß "ß "ß " œ %ß &ß *    we get:

     

     

     

     

     

     

 

 

 

 

 

 

 

 

 

 

 

"  " 7 " % "  "  7  " œ % 7 œ $

! # " 5 & !  #  "  5 œ & 5 œ #

" " #5 7 * "  "  #5  7 œ * #  %  $ œ *

† œ Ê Ê Þ

"

"

"

"

So  œ . By elementary operations on the rows V à V  V and

"  " $ "

! # " #

" " % $

 

 

 

 

 

 

 

 

 

 

 

   $ $ "

then V Ã V  V$ $ #, we getÀ

     

     

     

     

     

     

     

     

     

     

     

       

"  " $ " "  " $ " "  " $ "

! # " # ! # " # ! # " #

" " % $ ! # " # ! ! ! !

Ä Ä Þ "  "

! #

Since Á !

we get Rank  œ # and so Dim Imm œ # and Dim Ker œ %  # œ # Þ

II M 1) Given 0 Bß C œ B  $BC  #C  # #, and the unit vectors of @ A  "ß " and "ß  ", since W@0 P! œ# and WA0 P! œ ##, determine P and then calcolate ! H@#ßA0 P! . The function 0 Bß C œ B  $BC  #C  # # ist twice differentiable a Bß C −  ‘#.

So W@0 P! œ f0 P! † @ and W#@ßA0 P! œ @ †‡0 P! † AX . From f0Bß C œ #B  $Cà %C  $B   we getÀ







        

        

W W

@ ! !

A ! !

0 #B  $Cà %C  $B œ #

0 #B  $Cà %C  $B œ # #

P P

P P

œ f0 † @ œ †

œ f0 † A œ †

" "

# #

" "

# #

ß ß 

Ê

#B  $C  %C  $B # C  B # C # B

#B  $C  %C  $B % &B  (C % &B  (B  "% % C (

œ œ œ B  œ  *

œ Ê œ Ê œ Ê œ  .

(3)

Therefore P! œ  *ß  ( . It is then #  $  *ß  (

 $ %

  ‡Bß C œ  œ ‡  and so:

W@ßA# 0 ! #  $ œ

 $ %  

   

   

   

   

   

   

   

P œ "# "# † † œ "# "# †

" &

# #

"

#

(

#

œ &  ( œ  "

# # Þ

II M 2) Solve the problem .

Max/min u.c.:



   

0 Bß C œ B C  "

B Ÿ "  C

" Ÿ B  C

#

The objective function of the problem is a continuous function, the constraints define a feasi- ble region which is a compact and bounded set, and so we can apply Weierstrass Theorem.

Surely the function admits maximum value and minimum value.

To solve the problem we use the Kuhn-Tucker conditions.

We write the problem as .

Max/min u.c.:



   

0 Bß C œ B C  "

B  C  " Ÿ !

"  B  C Ÿ !

#

We form the Lagrangian function:

ABß Cß- -"ß #œB C  "   -"B  C  " #  -#"  B  C. By applying the first order conditions we have:

1) case -" œ !ß-# œ ! À

 

 

 

 

 

 

 

 

A A

wB wC

œ C  " œ ! œ B œ !

Ê Ê

B œ ! C œ  "

B  C  " Ÿ !

"  B  C Ÿ !

!  "  " Ÿ ! Ÿ ! À

#

"

!ß  " Â Þ

 !  " NO

X

2) case -" Á !ß-# œ ! À

 

 

 

 

 

 

 

A -

A -

-

- - - -

- - -

wB "

wC "

"

" " # "

"

#" " "

œ C  "  œ ! œ B  # C œ !

Ê Ê

C œ  "

B œ #  " œ #  #

#  # œ  "

B œ "  C

"  B  C Ÿ !

" 

"  B  C Ÿ !

#   #

 

Ê Ê

C œ  "

B œ #  " œ #  #

$  % œ  %

B œ ! C œ  "

B œ C œ

 

  

  

  

  

  

 





 -

- - - -

- - - -

"

" " # "

"

#" " " " " "

 

$ œ !

"  B  C Ÿ !

œ !

Ÿ !à œ  !

"   Ÿ !

"

∪ à

 !  " NO

)

"*

$% )$ "

* $

Since -" œ %  ! the point ) "ß could be a Maximum point.

$ * $

3) case -" œ !ß-# Á! À

(4)

  

  

  

  

  

  

  

A -

A -

- -

- - -

wB #

wC #

#

#

# # #

œ C  "  œ !

œ B  œ !

C œ "  B Ê Ê

B œ  C œ  " 

B œ "

C œ ! B  C  " Ÿ !

œ "

B  C  " Ÿ !

œ  "  !

"  !  " Ÿ !

# #

 "  Þ

Since -# œ  "  ! the point  "ß ! could be a minimum point.

4) caso -" Á!ß-# Á! À

  

  

  

  

  

  

  

A - -

A - -

- - - -

- - -

wB " #

wC " #

" # " #

# " #

œ C  "   œ ! œ B  # C  œ !

"  B B œ " 

Ê ∪ Ê

B œ " B œ !

C œ ! C œ "

"   œ ! #   œ !

"  œ !  œ !

C œ

C#  #

Ê ∪

B œ " B œ !

C œ ! C œ "

œ ! œ  #  !

œ  "  ! œ  %  !

 

 

 

 

 

 

- -

- -

" "

# #

.

Since the values are not positive, points -  "ß ! and  !ß " could be minimum points.

Let's study the objective function on the constraint B œ "  C#.

It is 0 "  C ß # C œ "  C#C  " œ C  "  C  C Ê 0 C œ "  $C  #C   ! $ # w  # . So $C  #C  " Ÿ ! Ê C œ  "„ "  $ œ  "„# . Therefore:

$ $

#

0 C   !  " Ÿ C Ÿ " Ê ! Ÿ C Ÿ " C œ " Ê B œ )

$ $ $ *

w  for . If .

At the point ) " there is the Maximum with ) " $#.

* $ß 0 * $ß œ #(

Let's study the objective function on the constraint C œ "  B.

It is 0 Bß "  Bœ B"  B " œ #B  B Ê 0 B œ #  #B   ! # w  for ! Ÿ B Ÿ ". If B œ ! Ê C œ ". The point  !ß " is the minimum point with 0 !ß "  œ0.

If B œ " Ê C œ !. The point  "ß ! it is neither a minimum nor a maximum point.

(5)

II M 3) Given the equation 0 Bß Cß D œ #BC  /  DB  /DC œ !, satisfied at "ß "ß ", veri- fy that an implicit function Bß C Ä D Bß C   can be defined with it and then calcolate the first order derivatives of such function.

The function 0 Bß Cß D  is differentiable a Bß Cß D −  ‘$, and 0 "ß "ß " œ #  "  " œ !  . It is: f0Bß Cß Dœ #C  /DBà #B  /DCà  /DB /DCÞ

So f0"ß "ß "œ $à $ à  #.

Since 0 "ß "ß " œDw   #Á ! it is possible to define an implicit function Bß C Ä D Bß C   whose first order derivatives will be equal to:

`D $ $ `D $ $

`B     # # `C   # #

   

"à " œ  0 "ß "ß " œ  œ à "à " œ  œ  œ Þ 0 "ß "ß " 0 "ß "ß "

0 "ß "ß "

Bw

w w

D D

Cw

II M 4) Given the function 0 Bß Cß D œ B  C  D  B C  CD  # # # # , analyze the nature of its stationary points.

We determine the stationary points of the function. Applying the first order conditions we have:

f0 Bß Cß D œ   Ê Ê

0 œ #B  #BC œ #B "  C œ ! 0 œ #C  B  D œ !

0 œ #D  C œ !

B œ ! C œ ! D œ !

 

 

 

 

Bw

w #

C Dw

and also:

  

  

  

 

 

 

 

 

B œ #  œ

C œ "

D œ

Ê

B œ B œ 

C œ " C œ "

D œ D œ

# " $

# #

"

#

$ $

# #

" "

# #

and Þ

We have then found three stationary points: !ß !ß ! , #$ß "ß "# and $#ß "ß"#Þ

(6)

We apply the second order conditions. From ‡Bß Cß D œ we get:

 

 

 

 

 

 

 

 

 

 

 

 

#  #C  #B !

 #B #  "

!  " #

‡!ß !ß ! œ à

 

 

 

 

 

 

 

 

 

 

 

 











 

       

   

# ! !

! #  "

!  " #

Ê

œ #  !

œ # !  !à œ #  "  !

! #  " #

œ # † #  "  !

 " #

‡ ‡

"

# #

$

since the point



  

 ‡  

"

#

$

 !

 !

 !

!ß !ß ! is a minimum pointà

‡   

 

   

   

   

   

   

   

 

 

 

 

 

 

 

 

 

 

$ "

#ß "ß# Ê œ  !

!  # !

 # #  "

!  " #

!  #

 # #

œ à

$

#

$

# #

$

#

$

#

since  ‡#  ! the point $ß "ß" à

# #

  is a saddle point

‡ œ   à

 

   

   

   

   

   

   

 

 

 

 

 

 

 

 

 

 

$ "

#ß "ß # Ê œ  !

! # !

# #  "

!  " #

! #

# #

$

#

$

# #

$

#

$

#

since  ‡#  ! the point $ß "ß"

# #

  is a saddle point.

Riferimenti

Documenti correlati

For the second order conditions we use the borde-. red Hessian matrix: ‡

Find

a compact set, and so surely exist maximum and mini- mum values.. It is not convenient to use

a To nalyze the nature of the stationary points of the function we apply first and second order

To nalyze the nature of the stationary points of the function we apply first and second order

a To nalyze the nature of the stationary points of the function we apply first and second order

Using Kuhn-Tucker conditions, we form the Lagrangian function:... We apply first

For a complete analysis we form the Lagrangian function only for this con- straint.. For a complete analysis we form the Lagrangian function only for