X
(n)(X
1, X
2, . . . , X
n) F
X(x)
X
(n)F
X(n)(x) = [F
X(x)]
nF
X(x)
X
(n)F
X(x)
F
X(n)(x) n
n X
(n)(X
1, X
2, . . . , X
n)
F
X(n)(x) = [F
X(x)]
n=
�
1 − n(1 − F ) + n(n − 1)
2 (1 − F )
2+
− n(n − 1)(n − 2)(1 − F )
6 + . . .
�
n
n→∞
lim F
X(n)(x) =
�
1 − n(1 − F ) + n
22 (1 − F )
2+
− n
36 (1 − F )
3+ . . .
�
= e
−n(1−F )n F
X(n)(x) = e
−n(1−F (x))X
(n)Φ
1= exp �
−e
−α(x−ε)�
α > 0 Φ
2= exp
�
−
� V x
�
ϑ�
x ≥ 0, V > 0; ϑ > 0
Φ
3= exp
�
− � x V
�
ϑ�
x ≤ 0, V < 0; ϑ > 1
n F
X(x) = 1 − e
−g(x)g(x) x
g(x) = αx
F
X(x) = 1 − e
−αx,
F
X(n)(x) = e
−n(1−FX(x))= exp [ −ne
αx] = exp �
−e
−α(x−ε)�
= Φ
1(x)
n = e
αεn
F
X(x) = exp �
−e
−α(x−ε)�
= exp �
−Λe
−αx�
, α > 0
α ε Λ = e
αε[0, t]
1/α
f
X(x) = dF
X(x)
dx = α exp �
−α(x − ε) − e
−α(x−ε)�
µ = ε + 0.57722 α σ
2= π
26α
2�x = ε
α
ε µ σ
ε = µ − 0.450σ 1
α = σ √ 6 π 1/α
σ
α
ε
σ µ
Cv Ca
Cv = σ
µ = π
√ 6(αε + 0.57722) = π
√ 6(ln Λ + 0.57722) Ca = µ
3σ
3= 1.1396
Cv Λ Ca
α ε y = α(x − ε)
F (y) = exp �
−e
−y� f (y) = exp �
−e
−y− y �
�
y µ(y) σ(y)
� y = 0
µ(y) = γ ∼ = 0.5772 σ(y) = π
√ 6 γ
X
iT
T = 1 1 − P
iP
iX
iT
X
TT
X
T= � − 1 α ln
� ln
� T T − 1
��
= �
� 1 − 1
α� ln
� ln
� T T − 1
���
α � X
TX
T= µ
�
1 − Cv
� 0.45 +
√ 6 π ln
� ln
� T T − 1
����
X
Tµ
K
TX
T= µK
TX
TK
TN
(x
i,1, . . . , x
i,ni) n
iξ
indice,iN ξ
indice,iξ
indice,iµ
i�x
ix ˘
iK
TK
T= x
i,Tξ
indice,i, i = 1, . . . , N K
Tξ
indiceµ
iK
TK
T= 1 − Cv
� 0.45 +
√ 6 π ln ln
� T T − 1
��
K
TCv
h = h(t)
h(t) = at
nh t
mm/ora n
t < 1 t > 1 h = h(t)
h t
t < 1 t > 1
i = i(t)
t t < 1
0 20 40 60 80 100 120 140
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
h [mm]
t [ore]
at^(n)
h
tP (h
t) h
t(h
t− t)
P (h
t)
t T
h
t,T= µ
tK
Tµ
tt K
TT
K
T= 1 − Cv
� 0.45 +
√ 6 π ln ln
� T T − 1
��
µ
tt K
TCv Cv
µ
t= ¯ at
n¯
a n a
µ
1hh
t,T= ¯ a · K
T· t
n¯
a n Cv
µ σ α ε
¯
a n
µ
tt Cv
Cv t
α ε K
Tt = 1h ¯ a n
T h
T(t) = at
na
T
a = ¯ aK
T= ¯ a
�
1 − Cv
� 0.45 +
√ 6 π ln ln
� T T − 1
���
t = 1 a µ(a) = ¯ a
K
T� y
20= α(a
20− ε) y
500= α(a
500− ε)
a
20a
500a
y
20y
500T = 20 T = 500 P (y)
y P (a) = P (y) T
y
T= − ln [− ln P (a)] , P (a) = 1 − 1 T
α ε
t = 1
ε = y
500a
20− y
20a
500y
500− y
20α = y
20a
20− ε
α ε
a
h
t=1µ(a) σ(a)
Cv
σ(a) = 1.283 α
¯
a = µ(a) = ε + 0.450σ Cv = σ(a)
µ(a)
K
Ta
n
n n n n
n
n n n
n n n
n
n
n
(T, n
T)
0.186 0.187 0.188 0.189 0.19 0.191 0.192 0.193 0.194 0.195 0.196
10 100 1000
n
Tr [anni]
Stazione di Mantova - cod. 758
n
n
n log(20) log(500)
n
n
T= n
20+ n
500− n
20log(500) − log(20) [log(T ) − log(20)]
a
20 500 T = 100 T = 200
a
|a
P AI,T− a
T|
a
T = 200
t = 1
a
0.01 0.050.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99 0.999
10 20 30 40 50
2 5 10 20 50 100 200 500
F(h) Tr [anni]
h(t=1h) [mm]
i/(N+1) Gumbel alfa= 0.23294; eps=19.79416 (i-0.5)/N PAI
0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99 0.999
10 20 30 40 50 60 70 80 90 100
2 5 10 20 50 100 200 500
F(h) Tr [anni]
h(t=1h) [mm]
i/(N+1) Gumbel alfa= 0.10773; eps=23.02367 (i-0.5)/N PAI
0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99 0.999
10 20 30 40 50 60 70 80
2 5 10 20 50 100 200 500
F(h) Tr [anni]
h(t=1h) [mm]
i/(N+1) Gumbel alfa= 0.14678; eps=21.51916 (i-0.5)/N PAI