• Non ci sono risultati.

cos ωt sin ωt −sin ωt cos ωt  The characteristic polynomial of matrix jωt is: ∆jωt(λ

N/A
N/A
Protected

Academic year: 2021

Condividi "cos ωt sin ωt −sin ωt cos ωt  The characteristic polynomial of matrix jωt is: ∆jωt(λ"

Copied!
4
0
0

Testo completo

(1)

Capitolo 0. INTRODUCTION 2.1

Example. Compute the exponential of matrix e: j =

 0 1

−1 0



→ jωt =

 0 ωt

−ωt 0



→ ejωt =

 cos ωt sin ωt

−sin ωt cos ωt



The characteristic polynomial of matrix jωt is:

jωt(λ) = det(λI − jωt) =

λ −ωt ωt λ

= (λ + ωt2) = (λ − jωt)(λ + jωt) The eigenvector v1 corresponding to the eigenvalue λ1 = jωt is:

1I − jωt)v1 = 0 →

jωt −ωt ωt jωt

 1 j



= 0 → v1 =  1 j



The eigenvector v2 corresponding to eigenvalue λ2 = −jωt is the complex conjugate of the eigenvector v1:

v2 = v1 =

 1

−j



The transformation matrix T which transforms matrix jωt in the Jordan ca- nonical form is:

T =  v1 v2  =  1 1 j −j



→ T−1 = 1 2j

 j 1 j −1



So, the exponential of matrix ejωt can be expressed as follows:

ejωt = Te

jωt 0 0 −jωt

T−1 =  1 1 j −j

  ejωt 0 0 ejωt

  j 1 j −1

 1 2j

=

ejωt+e−jωt 2

ejωte−jωt 2j

ejωte−jωt

2j

ejωt+e−jωt 2

 =

 cos ωt sin ωt

−sin ωt cos ωt



Zanasi Roberto - System Theory. A.A. 2015/2016

(2)

Capitolo 2. CANONICAL FORMS 2.2

Example. Given the following dynamic system:









˙x(t) =

0 1 0 1 0 0 0 0 1

x(t) y(t) =  1 1 1  x(t)

( ˙x(t) = Ax(t) y(t) = Cx(t) compute the output free evolution y(t) of the system.

Solution. The output free evolution can be expressed in the following way:

y(t) = CeAtx0 = CTeAtT−1x0 x = Tx

where T is transformation matrix which brings matrix A in the Jordan cano- nical form A. The characteristic polynomial A is

det(λI − A) = (λ − 1)2(λ + 1)

The eigenvalues of matrix A are: λ1 = 1 with molteplicity 2 and λ2 = −1. The eigenvectors corresponding to λ1 = 1 can be determined solving the following linear system:

1I − A)v1,2 = o →

1 −1 0

−1 1 0

0 0 0

v1,2 = 0 In this case there exist two linearly independent eigenvectors:

v1 =

 1 1 0

, v2 =

 0 0 1

The eigenvector corresponding to λ2 = −1 can be determined in a similar way:

2I − A)v3 = o, ↔

−1 −1 0

−1 −1 0 0 0 −2

v3 = 0 → v3 =

 1

−1 0

Zanasi Roberto - System Theory. A.A. 2015/2016

(3)

Capitolo 2. CANONICAL FORMS 2.3

Since the 3 eigenvectors are linearly independent, matrix A is diagonalizable.

The transformation matrix T has the following form:

T =  v1 v2 v3  =

1 0 1 1 0 −1 0 1 0

, T−1 =

0.5 0.5 0

0 0 1

0.5 −0.5 0

 The transformed matrices A and C are:

A = T−1AT =

1 0 0 0 1 0 0 0 −1

, C = CT =  2 1 0  The output free evolution can be expressed as follows:

y(t) = CTeAtT−1x0

=  1 1 1 

1 0 1 1 0 −1 0 1 0

et 0 0 0 et 0 0 0 et

0.5 0.5 0

0 0 1

0.5 −0.5 0

 x10

x20

x30

= et[x10 + x20 + x30] In Matlab:

-- Matlab commands --- syms t x1 x2 x3

A=[0 1 0; 1 0 0; 0 0 1];

C=[1 1 1];

x0=[x1; x2; x3];

yt=simplify(C*expm(A*t)*x0)

-- Matlab output --- yt =

exp(t)*(x1 + x2 + x3)

---

Zanasi Roberto - System Theory. A.A. 2015/2016

(4)

Capitolo 2. CANONICAL FORMS 2.4

Example. Compute the free evolution x(t) of the following dynamic system:

˙x(t) =

0 0 1 0 1 1

−1 0 0

x(t) Solution. The characteristic polynomial of matrix A is:

det(sI − A) =

s 0 −1

0 s − 1 −1

1 0 s

= (s − 1)(s2 + 1) = (s − 1)(s + j)(s − j) The three eigenvalues of matrix A are: s1,2 = ±j and s3 = 1. The complex eigenvector v1 associated to the eigenvalue s1 = j can be computed as follows:

(s1I − A)v1 = o ↔

j 0 −1

0 j − 1 −1

1 0 j

v1 = o → v1 =

 2 1 − j

2j

 The eigenvector v3 associated to the eigenvalue s3 = 1 is the following:

(s3I − A)v1 = o ↔

1 0 −1 0 0 −1 1 0 1

v1 = o → v3 =

 0 1 0

 Let us consider the following state space transformation x = Tx:

T =

2 0 0 1 −1 1 0 2 0

, A = T−1AT =

0 1 0

−1 0 0 0 0 1

 The free evolution of the system is:

x(t) = eAtx0 = TeAtT−1x0

=

2 0 0 1 −1 1 0 2 0

cos t sin t 0

−sin t cos t 0

0 0 et

0.5 0 0 0 0 0.5

−0.5 1 0.5

 x10

x20

x30

=

x10cos t + x30sin t

0.5x10(cos t + sin t − et) + x20et + 0.5x30(sin t − cos t + et) x30cos t − x10sin t

Zanasi Roberto - System Theory. A.A. 2015/2016

Riferimenti

Documenti correlati

d) trovare la condizione per cui un minimo di diffrazione della prima onda coincide con un minimo della seconda. e) Trovare la coppia di valori più piccoli per cui tale condizione

Corso di laurea in Geologia Istituzioni di matematiche.

[r]

[r]

Per avere la soluzione generale è sufficiente aggiun- gere la soluzione generale dell’equazione omogenea, cioè una arbitraria oscillazione libera:. x = A cos ωt + B sin ωt +

[r]

Prima di consegnare bisogna annotare le risposte date sul foglio fornito.. Ogni risposta esatta vale 2 punti, ogni risposta errata errata

[r]