• Non ci sono risultati.

Show that for any positive integer n, ⌊n/α⌋−1 X k=0  ⌈(k + {n/α})α⌉ β

N/A
N/A
Protected

Academic year: 2021

Condividi "Show that for any positive integer n, ⌊n/α⌋−1 X k=0  ⌈(k + {n/α})α⌉ β"

Copied!
1
0
0

Testo completo

(1)

Problem 11333

(American Mathematical Monthly, Vol.114, December 2007) Proposed by R. Tauraso (Italy).

Letα and β be positive irrational numbers. Show that for any positive integer n,

⌊n/α⌋−1

X

k=0

 ⌈(k + {n/α})α⌉

β



=

⌊n/β⌋−1

X

k=0

 ⌈(k + {n/β})β⌉

α



where{x} denotes the fractional part of x.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

We first note that

⌈(k + {n/α})α⌉ = ⌈(k + n/α − ⌊n/α⌋)α⌉ = ⌈n − jα⌉ = n + ⌈−jα⌉ = n − ⌊jα⌋

where j = ⌊n/α⌋ − k and therefore

⌊n/α⌋−1

X

k=0

 ⌈(k + {n/α})α⌉

β



=

⌊n/α⌋

X

j=1

 n − ⌊jα⌋

β

 .

Since (n − ⌊jα⌋)/β is never an integer then for any positive integer k

[⌊jα⌋ + ⌊kβ⌋ < n] = [⌊kβ⌋ < n − ⌊jα⌋] = [kβ < n − ⌊jα⌋] = [k < (n − ⌊jα⌋)/β] = [k ≤ ⌊(n − ⌊jα⌋)/β⌋]

where [·] is the indicator function. Hence

⌊n/β⌋

X

k=1

[⌊jα⌋ + ⌊kβ⌋ < n] =

⌊n/β⌋

X

k=1

[k ≤ ⌊(n − ⌊jα⌋)/β⌋] = n − ⌊jα⌋

β

 .

Finally

⌊n/α⌋−1

X

k=0

 ⌈(k + {n/α})α⌉

β



=

⌊n/α⌋

X

j=1

 n − ⌊jα⌋

β



=

⌊n/α⌋

X

j=1

⌊n/β⌋

X

k=1

[⌊jα⌋ + ⌊kβ⌋ < n]

which is symmetric with respect to α and β and the statement has been proved. 

Riferimenti

Documenti correlati