1
4. Piano tangente e retta normale a una superficie
Si dice piano tangente a una superficie S nel suo punto π0(π₯0;π¦0; π§0) il piano che contiene tutte le rette tangenti nel punto π0 a tutte le curve tracciate sulla superficie e passanti per π0.
Si chiama normale in π0 alla superficie S la retta perpendicolare al piano tangente nel punto di tangenza π0.
a. Lβequazione della superficie S Γ¨ data in forma esplicita π§ = π(π₯; π¦)
dove π(π₯; π¦) Γ¨ una funzione derivabile rispetto sia a π₯ che a π¦.
.Lβequazione del piano tangente a S nel suo punto π0(π₯0;π¦0; π§0) Γ¨ π§ β π§0 = ππ₯(π₯0;π¦0)(π₯ β π₯0) + ππ¦(π₯0;π¦0)(π¦ β π¦0) Lβequazione della normale a S nel suo punto π0(π₯0;π¦0; π§0) ,
se ππ₯(π₯0;π¦0) β 0 e ππ¦(π₯0;π¦0) β 0, Γ¨ π₯ β π₯0
ππ₯(π₯0;π¦0)= π¦ β π¦0
ππ¦(π₯0;π¦0)=π§ β π§0
β1 Nei seguenti casi la normale Γ¨ data da :
se ππ₯(π₯0;π¦0) = 0 e ππ¦(π₯0;π¦0) β 0 β {
π₯ β π₯0 = 0
π¦βπ¦0
ππ¦(π₯0;π¦0)=π§βπ§0
β1
se ππ₯(π₯0;π¦0) β 0 e ππ¦(π₯0;π¦0) = 0 β {
π¦ β π¦0 = 0
π₯βπ₯0
ππ₯(π₯0;π¦0)= π§βπ§0
β1
se ππ₯(π₯0;π¦0) = 0 e ππ¦(π₯0;π¦0) = 0 β {π₯ β π₯0 = 0
π¦ β π¦0 = 0
b. Lβequazione della superficie S Γ¨ data in forma implicita πΉ(π₯; π¦; π§) = 0 dove F Γ¨ derivabile rispetto alle variabili π₯, π¦, π§ .
Lβequazione del piano tangente a S nel suo punto π0(π₯0;π¦0; π§0) Γ¨
πΉπ₯(π₯0;π¦0; π§0)(π₯ β π₯0) + πΉπ¦(π₯0;π¦0; π§0)(π¦ β π¦0) + πΉπ§(π₯0;π¦0; π§0)(π§ β π§0) = 0 Lβequazione della normale a S nel suo punto π0(π₯0;π¦0; π§0) Γ¨
π₯ β π₯0
πΉπ₯(π₯0;π¦0; π§0)= π¦ β π¦0
πΉπ¦(π₯0;π¦0; π§0)= π§ β π§0 πΉπ§(π₯0;π¦0; π§0) se πΉπ₯(π₯0;π¦0; π§0) β 0, πΉπ¦(π₯0;π¦0; π§0) β 0, πΉπ§(π₯0;π¦0; π§0) β 0.
2 Esercizi
Determinare lβequazione del piano tangente e della normale alla superficie data nel punto a fianco indicato :
1. π§ = π₯4 β 2π¦3+ 2π₯ + π¦ β 1 π0(0; 1; β2)
2. π§ = 3π₯4+ π¦ + 1 π0(1; 0; 4)
3. π§ = 5π₯2+ π¦2+ π₯π¦ β 2π₯ π0(0; 1; 1)
4. π§ = π₯2+ 3π¦2+ π₯ β 1 π0(β1; 1; 2)
5. π§ =π₯+π¦π₯βπ¦ π0(β1; 1; 0)
6. π§ =π₯2+π¦1 2 π0(1; 0; 1)
7. π§ =π₯4+π¦π₯ 4 π0(1; 1; 2)
8. π§ = βπ¦2β π₯ β 1 π0(0; 2; β3)
9. π§ = βπ₯π¦ + π¦+3π₯ + 1 π0(0; 1; 2)
10. π§ = βπ₯3 2π¦ + 6 π0(1; 2; 2)
11. π§ = ππ₯+π¦ π0(0; 0; 1)
12. π§ = πβ(π₯4+π¦2) π0(0; 0; 1)
13. π§ = π¦2ππ₯2 π0(0; 0; 0)
3
14. π§ = 2π₯πβπ₯2π¦ π0(1; 0; 2)
15. π§ = πππ(π₯2 + π¦2+ 1) π0(β1; 0; πππ2)
16. π§ = πππ(π₯4 + π¦2) π0(0; 1; 0)
17. π§ = log(π₯π¦ + 2) π0(π; β1
π; 0)
18. π§ = π ππ(π₯ + π¦) π0(π
4;π
4; 1)
19. π§ = π ππ (π4+ π₯ + π¦) π0(π;π
2; ββ2
2)
20. π§ = π πππ₯ β πππ π¦ π0(π
3;π
4;β6
4)
21. πΉ(π₯; π¦; π§) = π₯42+π¦2
25βπ§2
8 = 0 π0(2; 5; 4)
22. πΉ(π₯; π¦; π§) = π₯2+ π¦2β 2π§2 = 3 π0(1; 2; 1)
4
Soluzioni
1. S. calcoliamo le derivate parziali e i loro valori in (0; 1):
ππ₯(π₯; π¦) = 4π₯3+ 2 ππ₯(0; 1) = 2 ππ¦(π₯; π¦) = β6π¦2 + 1 ππ¦(0; 1) = β5
piano tangente : π§ + 2 = 2π₯ β 5(π¦ β 1) β π§ = 2π₯ β 5π¦ + 3 retta normale : π₯2 = π¦β1
β5 =π§+2
β1 ;
2. S . ππ₯(π₯; π¦) = 12π₯3; ππ₯(1; 0) = 12
ππ¦(π₯; π¦) = 1 ππ¦(1; 0) = 1
piano tangente π§ β 4 = 12(π₯ β 1) + π¦ βΉ π§ = 12π₯ + π¦ β 8 retta normale π₯β1
12 =π¦
1= π§
β1βΉ {12π¦ = π₯ β 1
π¦ = βπ§ ;
3. S. ππ₯(π₯; π¦) = 10π₯ + π¦ β 2; ππ₯(0; 1) = β1 ππ¦(π₯; π¦) = 2π¦ + π₯ ππ¦(0; 1) = 2
piano tangente π§ β 1 = βπ₯ + 2(π¦ β 1) βΉ π§ = βπ₯ + 2π¦ β 1 retta normale β1π₯ = π¦β1
2 =π§β1
β1 βΉ { π§ = π₯ + 1 π¦ = β2π§ + 3;
4. S. ππ₯(π₯; π¦) = 2π₯ + 1; ππ₯(β1; 1) = β1
ππ¦(π₯; π¦) = 6π¦ ππ¦(β1; 1) = 6
piano tangente π§ β 2 = β(π₯ + 1) + 6(π¦ β 1) βΉ π§ = βπ₯ + 6π¦ β 5 retta normale π₯+1
β1 = π¦β1
6 =π§β2
β1;
5. S. ππ₯(π₯; π¦) = β 2π¦
(π₯βπ¦)2 ππ₯(β1; 1) = β1
2 ππ¦(π₯; π¦) = 2π₯
(π₯βπ¦)2 ππ¦(β1; 1) = β12 piano tangente: π§ = β1
2(π₯ + 1) β1
2(π¦ β 1) = β1
2π₯ β1
2π¦ retta normale : π₯+1
β12 =π¦β1
β12 = π§
β1;
5 6. S. ππ₯(π₯; π¦) = β2π₯
(π₯2+π¦2)2 ππ₯(1; 0) = β2 ππ¦(π₯; π¦) = β2π¦
(π₯2+π¦2)2 ππ¦(1; 0) = 0
piano tangente : π§ β 1 = β2(π₯ β 1) β π§ = β2π₯ + 3
retta normale : {
π₯β1
β2
=
π§β1β1
π¦ = 0 ; vedi fig. 1
Fig. 1 7. S. ππ₯(π₯; π¦) =3π₯4βπ¦4
π₯2 ; ππ₯(1; 1) = 2 ππ¦(π₯; π¦) =4π¦3
π₯ ππ¦(1; 1) = 4
piano tangente π§ β 2 = 2(π₯ β 1) + 4(π¦ β 1) βΉ π§ = 2π₯ + 4π¦ β 4 retta normale π₯β12 =π¦β1
4 = π§β2
β1;
8. S. ππ₯(π₯; π¦) = β1
2βπ¦2βπ₯β1 ππ₯(0; 2) = β 1
2β3 ππ¦(π₯; π¦) = π¦
βπ¦2βπ₯β1 ππ¦(0; 2) = 2
β3 piano tangente: π§ β β3 = β 1
2β3π₯ + 2
β3(π¦ β 2) retta normale : π₯
β 1 2β3
= π¦β22
β3
=π§ββ3
β1 ;
6 9. S. ππ₯(π₯; π¦) = π¦
2βπ₯π¦+π¦+ 3; ππ₯(0; 1) =7
2 ππ¦(π₯; π¦) = π₯+1
2βπ₯π¦+π¦ ππ¦(0; 1) =1
2
piano tangente π§ β 2 =72π₯ +1
2(π¦ β 1) βΉ 7π₯ + π¦ β 2π§ + 3 = 0 retta normale π₯7
2
= π¦β11 2
=π§β2
β1
10. S. ππ₯(π₯; π¦) = 2π₯π¦
3 β(π₯3 2π¦+6)2; ππ₯(1; 2) =1
3 ππ¦(π₯; π¦) = π₯2
3 β(π₯3 2π¦+6)2 ππ¦(1; 2) =121 piano tangente π§ β 2 =1
3(π₯ β 1) + 1
12(π¦ β 2) βΉ 4π₯ + π¦ β 12π§ + 18 = 0 retta normale 3(π₯ β 1) = 12(π¦ β 2) = βπ§ + 2;
11. S. ππ₯(π₯; π¦) = ππ¦(π₯; π¦) = ππ₯+π¦;
ππ₯(0; 0) = ππ¦(0; 0) = 1 piano tangente π§ β 1 = π₯ + π¦ retta normale x = y =π§β1β1 ; 12. S. ππ₯(π₯; π¦) = β4π₯3πβ(π₯4+π¦2) ππ₯(0; 0) = 0
ππ¦(π₯; π¦) = β2π¦πβ(π₯4+π¦2) ππ¦(0; 0) = 0 piano tangente β: π§ = 1
retta normale : {π₯ = 0
π¦ = 0 , cioΓ¨ lβasse π§; vedi fig. 2
Fig. 2
7 13. S. ππ₯(π₯; π¦) = 2π₯π¦2ππ₯2 ππ₯(0; 0) = 0
ππ¦(π₯; π¦) = 2π¦ππ₯2 ππ¦(0; 0) = 0 piano tangente: π§ = 0 ; retta normale : {π₯ = 0
π¦ = 0 , cioΓ¨ lβasse π§ ;
14. S. ππ₯(π₯; π¦) = 2πβπ₯2π¦(1 β 2π₯2π¦) ππ¦(π₯; π¦) = β2π₯3πβπ₯2π¦; ππ₯(1; 0) = 2 ππ¦(1; 0) = β2
piano tangente π§ β 2 = 2(π₯ β 1) β 2π¦ βΉ π§ = 2π₯ β 2π¦ retta normale π₯β1
2 = π¦
β2=π§β2
β1.
15. S. ππ₯(π₯; π¦) = 2π₯
π₯2+π¦2+1 ππ₯(β1; 0) = β1
ππ¦(π₯; π¦) =π₯2+π¦2π¦2+1 ππ¦(β1; 0) = 0 piano tangente: π§ β πππ2 = β(π₯ + 1) retta normale : {
π₯+1
β1 = π§βπππ2
β1
π¦ = 0 ;
16. S. ππ₯(π₯; π¦) =π₯4π₯4+π¦32 ππ₯(0; 1) = 0 ππ¦(π₯; π¦) = 2π¦
π₯4+π¦2 ππ¦(0; 1) = 2 piano tangente: π§ = 2(π¦ β 1) = 2π¦ β 2 retta normale : {π₯ = 0
π¦ = β2π§ + 1;
17. S. ππ₯(π₯; π¦) = π¦
π₯π¦+2; ππ₯(π; β1
π) = β1
π ππ¦(π₯; π¦) = π₯
π₯π¦+2 ππ¦(π; β1
π) = π piano tangente π§ = β1π(π₯ β π) + π (π¦ +1
π) βΉ π§ = β1
ππ₯ + ππ¦ + 2 retta normale π₯βπ
β1π = π¦+
1 π π = π§
β1 ;
8 18. S. ππ₯(π₯; π¦) = πππ (π₯ + π¦) ππ₯(π
4;π
4) = 0
ππ¦(π₯; π¦) = πππ (π₯ + π¦) ππ¦(π
4;π
4) = 0 piano tangente: π§ = 1
retta normale : {π₯ =π
4
π¦ =π
4
; vedi fig. 3
Fig. 3
19. S. ππ₯(π₯; π¦) = ππ¦(π₯; π¦) = πππ (π
4+ π₯ + π¦) ; ππ₯(π;π
2) = ππ¦(π;π
2) =β2
2 piano tangente π§ +β22 = β2
2 (π₯ β π) +β2
2 (π¦ βπ
2) retta normale π₯βπβ2
2
= π¦β
π 2
β2 2
=π§+
β2 2
β1 ;
20. S. ππ₯(π₯; π¦) = πππ π₯ β πππ π¦ ππ₯(π
3;π
4) =β2
4
ππ¦(π₯; π¦) = βπ πππ₯ β π πππ¦ ππ¦(π
3;π
4) = ββ6
4 piano tangente: π§ =β64 +β2
4 (π₯ βπ
3) ββ6
4 (π¦ βπ
4) retta normale : π₯β
π 3
β2 4
=π¦β
π 4
ββ6 4
= π§β
β6 4
β1
9 21. S. πΉπ₯ =π₯
2 , πΉπ₯(π0) = 1 , πΉπ¦ = 2
25π¦, πΉπ¦(π0) =2
5 , πΉπ§ = βπ§
4 , πΉπ§(π0) = β1
piano tangente : (π₯ β 2) +25(π¦ β 5) β (π§ β 4) = 0 β 5π₯ + 2π¦ β 5π§ = 0 retta normale : π₯β2
1 = π¦β52 5
= π§β4
β1;
22. S. piano tangente : π₯ + 2π¦ β 2π§ β 3 = 0
retta normale : π₯β12 = π¦β2
4 =π§β1
β4 ;