• Non ci sono risultati.

df ( x )= df ( x )= f ( x ) ;f ( x ) y ( x ;u ) y ( x ;u ) x (0)= x y t> 0 x (0)= x y t> 0 x Ix u 2 U U x 1 ;x 2 2 M h =[ h :::h ] x 2 M y = h ( x )1 • i • p x _ = f ( x )+ g ( x ) u X y =[ y :::y ] m u =[ u :::u ] p

N/A
N/A
Protected

Academic year: 2021

Condividi "df ( x )= df ( x )= f ( x ) ;f ( x ) y ( x ;u ) y ( x ;u ) x (0)= x y t> 0 x (0)= x y t> 0 x Ix u 2 U U x 1 ;x 2 2 M h =[ h :::h ] x 2 M y = h ( x )1 • i • p x _ = f ( x )+ g ( x ) u X y =[ y :::y ] m u =[ u :::u ] p"

Copied!
4
0
0

Testo completo

(1) 

(2)      "!$#%'&)(*'&)(,+-".0/21%354767+-89&;:<&;=;:<&)>?+-"@A!5+B.%!53C676<+-D%A+B474<35:FE;&;G%"@"H6JIK8L3M:NA47"476<35(,A.%+B. @"8".%+B"3O!J&)#%:7\]QPS".*RT6JU&)@"@'"3(,>?H+;6<':7&;(*(,&^+V4<+;&).%@"@"+_+W35474<678%19:7D%35"47+*4<LD9LU4747""47476<67353M(,(,LUD%.%L+B.%.X+B@"4F"6<.%:73M+_&;":7.`U67"3M.:735>?47+B4<:F3;(WPa&,RbD%+B.%Y47!5"+BD9.Z356<:7:7'+;&)@"(,@'+A+ [ &;@"@"+B:<&c1%. 4<"4F6<35.%(*3M@"&d@'&e(_>?+;1%:7@H(*6<HE;&A&;f :7'&)G%"@"3!5+B. m ".%=;:7354<47 u = [u . . . u ] 3 p 1%47!MH673 y = [y . . . y ] x˙ = f (x) + g (x)u g R]P"hji R]PlkBi y = h (x) 1 ≤ i ≤ p g D%oK+O'EZ&)3(*h+0'=.%"p5[h'&;@"(,. .35..`h673^] &;@"\W!51%@'.%&3q(*D%&;3Cr98%.%89"&pM":7+;3M.9=;Q+BP @'&;:F3WD%3M@"@Qm 1%47!MH6<&XD%35@n47"476<35(*&3 x ∈ M P st`u<vnw*vQxzyq{9|*}C~€;~‚ x1, x2 ∈ M }$-ƒ;‚„< )†‡ ˆ".%D%"4F6<".%=B1%"G%"@",‰€{Z}CQ;Š* d‹"d†‡ )~€;Œ „J‚ ) )†%†~‚’<|Ž )‹”„J‹– jTŠ];%Še)Š0~‚~€" }J}CxQ—5”I‹–x ‘T ‹7˜ }O|C|J™)‘K )‹–9{ |C’ˆ‚ j†‡ 7“;| †9e„J9 )|$†9’ ~Q’< )‹”‹' u^∈%;U’$~Q•’<‰W|,„JƒB );† ‹•‹' *U }$~š•)†A~›}C W‚|$•ŠW†9|dQƒ`;|C‹'|   ’ y ^%;t’$~Q>•’<|00ƒZ)‹•‹' ,}C~€;~š W•†% Q;‹"|   _ | F ‹ ˜ C | ; ™ j – ‹ { ‚  )  † | %  C |   x(0) = x x(0) = x }O )† *QƒZ|C†9~Q‚„Jœ%|^†‡|$‹ ‹' )’< Wƒ`y )Še•†9Q Vt ƒ;>aƒ`0|QN†9  ‚ j†‡|Mž Ÿ@Q m 1%35:,=B19EZ&;35=B:7@"H'r9&)!M.%&;pO:7&X3D%@Qm35"@".%@"3VD%"D%4F6<1%".%3V=B1%1%47"!5G%H"6<@"3H6JIŽD% D%1%34F6J&)6< \D%1%.%/`1%3.%3M!5354<4<&;:7"+ˆEZ35:7Hr9!M&;:73 :7"!5+B:747+*&;=B@"¢476<:F19(,35.Z6< D%35@"@Qm &;@"=B35G%y(x:<&0D%, u)£ "3B3 P y(x , u)PdŸ 35:_>?&;:73V!5"¡cG%"47+B=B.9&>Q&):73 1. m. T. p. 1. m X. i. i. i=1. i. p. 1. 1. i. T. 2. 1. 1. 2. 2. 1. 2. st`u<vnw*v'¤yq{9|¥J{2†  ‚ )†9 f (x), f (x) }Cƒ;Q„J )†‡ ¦".%D%"835.%D%3M.Z6<W}O| „J )™;|C~Q~š )’$ | df (x) = O} )† _•†ƒ) 9|C†ƒZ|C†9~Qn‰€•†{2†eL{A†%~› , _”†{A†”†A}C‚|CŠ*|  ž df (x) = hBhBh 1. ∂ f1 ∂x. 2. ∂ f2 ∂x. 1. 2.

(3) W§ ¨a©*ªMª5«`¬O­%®%¯ °?±Q°”²M³ ´šµˆ¶9·;¸›¹<º"»M¼;½'·;¸7¾;¿ ¶¾5¸KÀZ¾5¸7ºHÁ9»M·;¸7¾0½Q Ã%Ä;Ã9·;ÄB½"º'·;µ%ÅM·VÆ%ºNÆ%Ã%¾eÇ?Ã%µ%ÅMº"¼;µ%ºNº"µˆ¼BÄBµ%º º"È7¹J·)µ`¹<¾ t¿ Ç?É Ã%È7µ%ÃAÅ5Ê*º"¼B»Mµ%º"º¢¾5µZÈ<¼;¹<¾0µ9¼0»5¼BǕÃ%µAµ9Ç?¸7Å5¼;º"µ`¼B¹Jµ%·)º ¸7·;¾0µ9ºY·;½"ÀBºH·)¹<º"½"»J¼BÌ%¸7º ¾jÍJÆ%Înº Ï]¹<ÃA¼O¹7ÀZ¹<¾-¾eÈJ½"·)¾0¸<Ð ½"¼B¸7¼Æ%¾5¸7ºHÀ;·)¹<¾0º"µ t = 0 Ë È7¾0½"¾0Æ%Ã%¾ yi (0) = hi (x0 ) P P i i i y˙i (0) = ∂h x˙ |0 = ∂h f (x) + j ∂h g (x)uj |0 = Lf hi (x0 ) + j Lgj hi uj (0) ∂x ∂x ∂x j y¨i (0) = . = P P P Lf Lf hi + j Lf Lgj hi uj (0) + j Lgj Lf hi uj (0) + j Lgj Lgj hi uj (0) + . . .. Ñ º ¶%Ã%Ò0Á9µÆL·0¼;¸<·0¾Mµ`Ã%µ%»5º'·;¸7¾qÃ%µ9·0¶%¸7º"Ó*·0Æ%¾5Á9µ%º"Å5º"¼Bµ%¾-Æ9º¢¼BÈ7È<¾5¸FÀ;·)Ô%º"½'ºH¹<ÐAÕ Ö «`×<¨a§W¨'ØÚٕÛÜCÙ'ÜCݚÞCß,àáeâOÜJÜMÞCã$ä)àZåCٕÛ'Þ-ÜMÞ x Ix ٕßSæۖقç<àçJè9Þ x = x é ´šÆ%µ ¾5½"½"¸7¾ ¾M·;»5½H¼B¹Jµ%ÐXÆ%È<º"ÅMº'·)º"¼;Ó*µ%¼cº9Æ%º"µ`º9¹7¸<¾M·)¸7µ%¾5ÄBÈ7¼qÈJ·jÈ<¹<Ã*ºTÓ*·c·jÆ9¹<·)¸7¸7º"¾V»5ºQÎëÃ%µ9ê ·c¾5¸NÆ%ÇQ¾C·;Á9¸7¾ìµ9º"»MÅ5º"º"Òq¼Bµ%Æ%¾V¼BÔ%Æ%Ô%ºbº'·;¼BÓ,È7È7¼q¾M¸›¶À;·;¾5¸7Ô%Ò^º"½"ºH·;¹J»5ÐX»5¼B¹<µ`¸F¼O¹7À;¾MµZ·;¹Jµ%·;Æ%¸š¼ í »5·;ºYµ%»JÆ9Ì%ºY¾0»5¼B½'·µ%Æ%Æ%º"¾CÅ5Á9º"¼Bµ%µ%º"ºUÅ5º"À;¼B·;µ%½"¾0º"Æ%Æ%¾eºN½"¼`º"µ%»MÆ%·;º"½"È7Ó,¹7º"¾5µ%µ`ÄB¹<Ã%¾;º"¿Ô%¹<º"¸<½"ºH·j¹J¹7Ð ¹J·;µ%ÆLÆ%·V¼BÈ7º"ºYµZÆ%¹<¾MºYµ%È<Æ%º"ÈF¾5¹<¸7¾5È7Ó*ºNº"ºYµˆµ%¼BÈ7¾5µcµ%È<½"º"¼µ%¾M½"¼`·;¸7»OºQ·)ÎK½"¾Bî]¿¢½"»M½"¼;¼;¸<µ2· í È7º"Æ%¾M¸<·)µ%Æ%¼ »Mº"¼ É È7¼B½"¼ »5¼BµZ¹<¸7¼;½'½"ºS¹J·)½"ºK»JÌ%¾B¿ ¶É ¾M¸V¶%º"»5»5¼B½"º]º"µ`¹<¾5¸FÀ;·;½"½"ºS¹<¾5Ó,¶¼B¸7·;½"ºQ¿Sµ%¼Bµ ÇQÈ7·)¾M»MÄ;»5Ã%º'¾M·;µZµ%¹<¼ï¾q·;Æ%½"¾C½"Á9¼BµZµ%¹Jº"Å5·;º"µ9¼B·;µ%¸F¾q¾cÆ%½"º¢¼ðº"µ9È7¹JÆ%·jº"ÈF¹<¹<¼ º"µ%x(t) ÄBÃ%º"Ô%º"Æ9½"ºH·ð¹JÐAÃ%Î µñº"µ`¹<¼;¸7µ%¼ïÆ%º x ÎòÏ]º'·;Ó,¼ïÆ%Ã%µ%ó`Ã%¾c½'· Öæ9ÞC«`ã,×<â<¨aü;§Wø9Ù¨HôÚç<â)õ-ø9ÝQö9ã<Þâ)ەÜ$Û"âXݚà)çJ݂ÙâOÜCx݀à;,ø%xÝ›Þ ∈ V ⊂ù çJMâ)ø ÜCÙq÷;ٕø2قçJÜCâjقÞCø‡ß*â Þ*º'µ%÷`Æ%Þ$º"Ù ÈF¹<çJº"â)µ%ø9ÄBÝQÃ%ã<º"â)Ô%۔ۖº"Ùì½"ºWà;ùßexß0IxÙ'Ü<ÜCúÙQå5ٕÜOۖÞJÙ û u∈U U ú çJè%Þ*æ9Þ$ß,ã à;ø9ݚÞCø`üZà àXæAÛ"à;Þ0ã$ÜMÝQٕâ)ã<ۖÞKöBý5÷Zقà)â)ەø%Û'â-Ù x(t, û < ç ) â 9 ø š Ý C Þ 9 ø 2 ö š Ý , Þ • Ù ø ] û 7 Û þ C Þ ; ä ) â l Û Z ö C ý ‚ Ù ) ⠇ ø Þ x , u) x(t, x , u) V Ü$ݚà)ݛâqٕø9Ù"ýCÙQà;Û'Þ x(0) = x ÞSÛFþ ÞCä;âjۖöZýCقâ)ø‡Þ y æ9ÞCã t > 0 y t>0 ÷`àVÞ?ÿëæ%à)ø9ã$Ù"݂ýCٕقã<â)Þø‡Þ÷Zé à;ەÛ"âXÜCݚà)ݛâcٕø9Ù"ý5Ù?à;Û'Þ x(0) = x ÜOâjø‡âdÙQ÷`Þ$ø9ÝQقçJè9ÞVø‡ÞCÛbÛ'âjãJâˆ÷`â)ßeٕø9قâŽ÷)Ù î]½"¼`½"»O½"·)¼B½"¸<Ó,·_¾MÈ7µZº'·;¹<Ó,¾;Î ¼e¶%¸7¼BµZ¹<º¢·_Æ9·;¸7¾KÃ%µ9·_Æ%¾5Á9µ%º"Å5º"¼Bµ%¾KÆ%º¼BÈ<È7¾5¸FÀ;·;Ô%º"½"ºH¹JÐ_µ%¼BµV½'º"µ%¾M·;¸F¾]À;·;½"º"Æ9· Ö «`×<÷)¨aÙ §W¨ ٕøJÛAçCÜCö2Ù'Ü$Ù'ûaݛÞ$æ9ß*ÞCãVà,â<á]ü;÷`ø%ÞCÙìÝQݚٕâø9ݚ½"â)¼2ã$»Mø·;â½"Ó,¾5µ`¹7¾ ¼;È<È7¾M÷;¸›Ù À;·;Ô%º"û]½"¾ Û"àXº"µ ã<Þ$xÛ"àOý5ÜOقÞKâjø‡ÞJÜCÞ Ù'Ü$Ý›Þ öAøVٕٕø9ßSݚæâ)ã$ۖقøç<àâ W V ⊂M x x Ix çJè%Þ x x= x é Þ_ٕۢÜCÙ'ÜCݚÞCß,àXá_Û'âOç<à;ÛlßWÞCø%ݛÞ,âOÜ<ÜOÞCã$ä)àBå5ٕÛ'Þ æ9ÞCã,â7ü;ø9Ù x û à;ەÛ'âjã<àá0÷`ÞCÝQݚ⠽"¼`»O·)½"Ó,¾MµZ¹<¾ ¼BÈ7È7¾M¸FÀ;·)Ô%º"½"¾ é ÖçJâ)«`ø%×<݂¨aÙQÞC§Wø‡Þ ¨ õ_ÞQÿëø%ÙQà;ß*Þìâ ÝQö2Ñ ÝQ¶9ݛ·;ÞTÅ5Û'º"Þì¼0Û'Æ%â)ã<ºâq¼BÈ7÷`È<ÞC¾5ã$¸FٕÀ;äj·;à;Å5ݚº"ÞS¼B÷;µ%ٕ¾ ã<Þ<Û'ýCâ_قâ)܀æ%øàOà)ý5ۖ٠قâe÷;٠ٕۖ ø‡Ù‚Þ7Þ à;ã<Þ^ۖö2÷;ø`Ù ü`Jâ-ö2Û'ø2Þìý5ÝQقã7âjà;ø9ÙQÙaÞC݂çJݚè%â Þ ã$قÞe÷ZÞCۇÜCÙ'hÜCݚÞC,ß,. .àj.ûì, hçCقâOá L L . . . L h ûìçJâ)ø x = f, g , g , . . . , g , k = 1, 2, . . . Jé øWæã7à)݂قç7à 1. 2. 1. 2. 1. 1. 2. 1. 1. 2. 2. 1. 1. 2. 2. . 0. 0. 1. . 0. 1. 2. 2. 0. . . . 1.

(4) . p. x1. x2. xk j. i. 1. 2. m. . !#"%$&

(5) (')#*

(6) ,+-)#*#./ %*#". 8&89. λ(x) : <n →. <1. "0#'!)#*1/234%"'5'!!6 ". f (x) 7.

(7) O = [h1 , . . . , hp , Lf h 1 , . . . , L f h p , ... Lfn−1 h1 , . . . , Lfn−1 hp , Lg1 h1 , . . . Lg1 hp , . . . , Lgm Lgm−1 hp , . . .] :<;>=?=@A ;%B CED?FGD?HICE;KJLHICEHNMGD?HPOKMGHIQSRETL;GJL;,U(VWULU(;,=?;,XYVECEFGD?HICEDPAE;G=?=?HNJLU@#U(HNMZE;K@3RER @3D?H3CEH CE;>=?=?;NVEJLM>D-UL;I[QSHI=-U(D?RE=?D?M>@

(8) U(;NR\;GTK=?;<XYVECEFGD?HICED\AE;G]I=?D\D?CE]IT/;>JLJLD!^`_CaRET(@

(9) U(D?M>@b=?HcJLR @3FGD?HcAED HIJLJ(;GT/d3@3FGD?HICE;eMGHID?CEMGD?AE;MGHICS=?HfJLR @3FGD?HfAE;G=?=?;ed3@

(10) TLD@3FGD?HICEDEAE;G=?=;eVEJLM>D-UL;MGHITLTLD?JLR\H3C AE;GCgU(D @3AhD?CE]ITL;GJLJ(D0MGHIJ/U@3CgU(Di@jU(T(@

(11) ULULDiAED0RED?MGM>H3=@kAEVET(@

(12) U@^alHnmoEp>qGr!sut3rNsmm>v%wx

(13) pgy%r{z|r{}~€ M>H3CPU(D?;GCE;U(VWULU(;u=?;XYVECEF>D?H3CED. h(x). ;u=?;u=H3TLH€AE;GTLD-d3@

(14) U(;uAED<HI]3CED<HITLAED?CE;3[M>@3=?MGHI=@#U(;. =?VEC ]3HS=?;1U(T(@

(15) D?;GULULHITLD?;fAE;G=‚J(D?J/U(;GQƒ@^. „j P†(‡,ˆ‰‡‹ŠŒcvY0Ž rYp3ƒsSz?pjMGHAED?J/U(TLD?EVEFGD?HICE;fAED‚HIJ(JL;GT/d3@3ED?=?D-U‘. dO = span ∂Lgm hp ,... ∂x. h. i. dO ’. s#ƒv>“. ∂Lg1 hp ∂Lf hp ∂Lg1 h1 p ∂Lf h1 gm h 1 ∂h1 , . . . , ∂h , ∂x , . . . , ∂x , ∂x , . . . , ∂x , . . . , ∂L∂x ,..., ∂x ∂x. = span[dλ(x), λ ∈ O]. ”Ž•‰p

(16) Ž r!v%wLp1o\r{– ’. s#NoEp

(17) }!}p#—. dO(q) = span[dH(q)|H ∈ O], q ∈ M ˜iCPVECEMGD@3QSH™H3T(@NVECšU(;GHIT/;>Q‰@NMZE;KM>DPA&‘<VEC @NMGHICEAED?FGD?HICE;KJ(VE=?=5› HIJLJL;>T/d3@

(18) ED?=?D-U‘œY=?HPM>@3=?;ž JLX{TLVWULU@3CEAEH•=@uAE;%B C D?FGD?HICE;ƒAEDKMGHPAED?JLU(TLD?EVEFGD?HICE;ƒAEDKHIJLJL;>T/d3@

(19) ED?=?D-U‘•@3RER\;GC @XYHIT/C D-U(@W^ Ÿ. H3QS;bOb=?;GM>D-U(Hƒ@

(20) U/U(;>CEAE;GTLJLD5[ U(T(@

(21) ULU(@3CEAEHƒJLD?J/U(;>QSDCEHICu=?D?CE;>@3TLD5[&=5› H3J(JL;>TdI@

(22) ED?=?D-U‘S=?HM>@3=?;. CEHICkDQSRE=?D?M>@=5› HIJLJ(;GT/d3@3ED?=?D-U‘]3=?HI @3=?;3^.  . P¡&¢ £¥¤§¦€¨/¡\©>©G P¢ªE¤E«­¬Y®Y¬‹¯°¥®{¡±3¤&®{ E²¥³&r5pµ´޶m%rm%}v%Spµ´z|}5r{x

(23) p

(24) wr5pgyGr{z?v r{Ž·3w(v(mm%r. u = [u1 . . . um ]T. v. p. ´gm ’. r{}v. y = [y1 . . . yp ]. x˙ = f (x) +. m X. ޏvz{z?p<¹Gs

(25) w‰pI“. s#Ž ’. m. gi (x)ui. i=1. º5»¼½¾

(26) ¿#»º!À½iÁKÂÃÄ-ÅÆÇ{Æ<ÈÄ|Ã!ÂÉÄ?ÊË3ÆÌ ÂKÈÄ. λ(x). Ì ÍËGÎGÊ. f (x). ÏÐ Ñ%Ò. ½/Ó!ÔÕ» Ñ. ¿#½. n. Lf λ(x) =. X ∂λ ∂λ f (x) = fi (x) ∂x ∂xi i=1. Ü Ô ½ ½ÓÔÕ/» ¿#½\Ôº!º À»ÔݼÞ#¿

(27) ßGÞ#½\Ô%¼`Þ#¿

(28) Ԃà?Þ#¿#Õ/» ¿#½\º!À/Ô ÔÓ5½\½\Ô¼0Þ#¿iÀ/Ôá ½ã5ã Ï  Ñ Ò Ñ Ñ Ñ Ï Ò3ÑÝâ à?Þ#¿#Õ/» # ¿ ½eº5À/Ô ÔÓ!½ ԙ¼½/Ó5» ÔãÔN¼» Ó!½/Õ/» ¿

(29) Ô ½KåÓ!» ½ã!» æ#» ½%ç¼Þ#¿

(30) ßGÞ#½ ½/Ó0½/º5½/á Ñ Ï Øeä â Ñ Ï Ò Ï Ò Ò ¼½/Ó!» Ô(ãÔ¼» â λ(x) Ï Þ#¿#è Ñ f (x) ½iº5Þ

(31) ÀÀ½Lº!ºY» â Ôá½/¿Gã!½ Ï Þ#¿#è Ñ g(x) º5» Ñ ã5ã!» ½/¿#½ Ï ÔK¿>Þ. Lg Lf λ(x) =. ∂(Lf λ(x)) g(x) ∂x. ֋×ÙØ Ú%Û. ». Ó!»Ô Ñ Ñ. Ñ(â. ç. Ï. ½&Þ#¿

(32) Ô¿>Þ. Ñ(â. Ó5½/¿

(33) ¼½/¿

(34) ¼. Ò Ôià?Þ#¿#Õ/». Ñ. ¿#½%é. ÑNÏ. Ô Ô. ֋×ÙØ êGÛ. ¦&¦ë.

(35) ìƒíiî‰ï>ïGðPñòEóEô­õYö5õ‹÷>ø. yi = hi (x) 1 ≤ i ≤ p. . ùPú#û3ü. h = [h1 . . . hp ]T. ü.     . ýbþ?ÿ. ‰ÿ. ü Pú. Eÿ. . þ-ÿ. 

(36)  . ücùgü. þ{þ. 

(37) 

(38) . ùPü. ÿ. þ. dO = n. ü. ‰ÿ. ü. x∈M. . !#"%$ ?;@ <;:;A

(39)  CBD .  & 

(40) 

(41)  (')+*-,' /.10+23. )434 .1576 ,8  ' .:9 ;: <;&= <;> E F== <;>E E ;> x0 7 <;> ; 

(42) E;  <EG x0

(43) 

(44) 3

(45)  H . 'I*,J43) 0 *1K L0 K 0NM K 0+2 )  4 )%', 2 ) 6 ,'O,  = k < n  M K 0 2 )   4 0 O)%',QP 5 R2S $T 0 ) 0UM )434  ,  ) . 4 *1'K .-57. ',V')<*-,' . )%434 .1576 ,dO 8  ' R2S ÿ3þ{þ. ú. Lÿ. Lÿ. ü. {þ. û. úú. ‰ÿSý. iÿ. þ. ú. ù. {þ ù. WXWY. ü. ý. ü. ú. ü. ü. ú. ý.

(46)

Riferimenti

Documenti correlati

Cilia R, Tunesi S, Marotta G, Cereda E, Siri C, Tesei S, Zecchinelli AL, Canesi M, Mariani CB, Meucci N, Sacilotto G, Zini M, Barichella M, Magnani C, Duga S, Asselta R, Soldà

Ciprandi G, Agostinis F, Amoroso S, Ariano R, Barbato A, Bassi M, Cadario G, Campi P, Cardinale F, Romano C, Incorvaia C, Danneo R, Dal Bo S, Di Gioacchino M, Fiocchi A, Galimberti

(a) Per risolvere gli integrali di funzioni razionali, occorre anzitutto che il grado del numeratore sia strettamente inferiore al grado del denominatore... Si tratta dell’integrale

So, the concentration of Fe(III) ions in a solution can be determined by titration with the ligand H 3 L even in the presence of Fe(II) ions — the ligand is added to the solution

Given the surface tensions for the other interfaces you can calculate energy change to make the water touch the walls instead of air, but this turns out to be negligible:

[r]

onde in una dimensione; partendo dalla formula di d'Alemb ert,

(ii) dimostrare l'unicit a della soluzione dell'equazione di Laplace