• Non ci sono risultati.

Chimica con cinetica di reazione

6.2 Studio su una colonna (1D)

6.2.3 Chimica con cinetica di reazione

Proli della colonna al rallentare della cinetica

L'introduzione della dipendenza dal tempo della dissoluzione provoca nella colonna uno scosta- mento dal comportamento lineare.

Si è già ampiamente discusso nel capitolo precedente di come Hytec tratti la cinetica, di come essa debba essere considerata relativamente alla velocità del uido e dei numeri adimen- sionali P e e Da che permettono di parametrizzare questo rapporto. Quello che manca è di visualizzare il procedimento pratico per determinare quando si possa parlare di cinetica rapida o lenta, e di come questo inuenzi l'evoluzione della colonna.

L'opzione cinetica viene introdotta in Hytec con un comando del tipo: kinetics {

rate = -1e-10 molal/s y-term, species = Calcite }

nel quale si denisce la costante cinetica kh(pag. 73, che assume valori negativi in quanto riferita

alla dissoluzione della calcite. Agendo sul valore del rate, nella fattispecie incrementandone il modulo (resta pur sempre una grandezza negativa) si rallenta la velocità di reazione.

Il numero di Damköhler sarà utilizzato da ora in poi per descrivere la velocità di reazione. Il numero di Péclet associato alla simulazione all'equilibrio sulla colonna omogenea era (e resta) 0.31; sono state testate diverse costanti cinetiche in modo da ottenere che Da variasse tra circa 200 (le cinetiche più rapide) e circa 0.2 (le più lente). In gura6.9 sono riportati i proli della calcite lungo la colonna che si ottengono, ad un istante ssato, per alcuni di questi valori di Da, e dunque di cinetica.

Questa gura è molto istruttiva. In essa si distingue chiaramente il prolo all'equilibrio, in nero; per cinetiche molto rapide, le linee di colore verde corrispondenti a valori di Da di 187 e 93, i proli approssimano piuttosto bene quello discontinuo dell'equilibrio, cominciando tuttavia a staccarsene, soprattutto per il fatto che non è più solamente una la maglia della colonna nella quale sta avvenendo la dissoluzione, ma via via di più. In ogni caso, il passaggio tra la zona in cui la calcite è completamente dissolta e la zona intatta avviene nel giro di poche maglie. Per Da di circa 50, invece, il prolo sembra addirittura orizzontale - ma non nullo ! - per un buon tratto iniziale, formando uno scalino. Questa struttura caratteristica è in realtà il risultato di una dinamica piuttosto complessa derivante dalla variazione, nella colonna, della velocità di dissoluzione della calcite (che, si ricordi, è determinata da un lato dalla costante cinetica, e dall' altra dallo scarto della soluzione rispetto all'equilibrio, ovvero dalle concentrazioni dei soluti in ogni istante di tempo). In poche parole, per costanti cinetiche sucientemente lente, la colonna comincia a dissolvere calcite in maniera quasi uniforme; il prolo assomiglia molto ad una retta poco inclinata rispetto all'orizzontale, che si abbassa a velocità costante. Dopo un certo tempo però il termine scarto dall'equilibrio diventa più importante, determinando un'accelerazione delle reazioni che consumano la soluzione iniettata (e la calcite). Essa viene allora consumata

più rapidamente, a partire dalle maglie iniziali della colonna, provocando in esse un'accelerazione della dissoluzione, e arrestandola o comunque rallentandola nel resto della colonna. Il sistema si divide di nuovo più nettamente in due parti: nella prima continuano ad avvenire le reazioni, e lo scalino si abbassa in maniera quasi omogenea, mentre nella seconda non succede praticamente più nulla, almeno no a quando la calcite nello scalino non viene consumata completamente. A partire da questo momento, allora, la soluzione d'attacco ricomincia ad arrivare inalterata nella parte di colonna che contiene ancora della calcite, e le reazioni in essa riprendono seguendo la medesima falsariga, ed un nuovo scalino si formerà più avanti nella colonna. Ipotizzando di vedere il lmato della dissoluzione della calcite, allora, si vedrebbe la reazione avanzare in maniera discontinua, ad ondate successive.

Al diminuire ulteriore di Da, inne, la lunghezza dello scalino aumenta, no a diventare lungo quanto la colonna stessa. In questo caso, allora, la dissoluzione è completamente limitata dalla cinetica, in quanto la soluzione non ha il tempo di variare la propria composizione lungo la colonna; il cui prolo diventa a questo punto una retta praticamente orizzontale, e rimane tale per tutta la durata dell'esperienza.

0 20 40 60 80 100 0 2 4 6 8 x

Calcite [mol/l roccia]

Da: Equilibrio 187.5 93.75 46.87 18.75 9.38

Figura 6.9: Proli di dissoluzione al variare della cinetica, dall'equilibrio (in nero) alle cinetiche più lente (blu scuro). Per grandi Da la reazione approssima il comportamento all'equilibrio istantaneo; al diminuire della velocità di reazione, la composizione della soluzione varia sempre meno tra ingresso ed uscita della colonna, no ad arrivare ad una condizione in cui la dissoluzione avviene omogeneamente su tutto il prolo (retta orizzontale)

Le curve di gura6.9permettono di identicare i range di valori di Da, e per conseguenza di P e·Da, che discriminano il comportamento del sistema. Da notare che è suciente uno scarto di un ordine di grandezza sulla costante cinetica per cambiare completamente tale comportamento: di qui la necessità di valutare attentamente, nel caso di applicazione ad un sistema reale, la cinetica delle reazioni. Nondimeno, appaiono i valori soglia di Da < 20 per la dissoluzione omogenea su tutto il dominio e Da > 80 per il comportamento che approssima l'equilibrio (che resta, naturalmente, la cinetica più rapida possibile).

Eetto pratico della cinetica: perdita di linearità tra iniezione e dissoluzione

In condizioni di cinetica lenta perdono di importanza i concetti di fronte di reazione ed il relativo tempo di arrivo, mentre si assiste ad un fatto nuovo che è importante quanticare: una parte dell'acido iniettato nella colonna la oltrepassa senza avere il tempo di reagire. Ciò può avvenire n dall'inizio della simulazione, per le cinetiche più lente, oppure solo avvicinandosene alla ne, per le cinetiche un po' più rapide, quando lo pseudo-fronte è arrivato in prossimità dell'estremità della colonna. Ad ogni modo, in maniera generale, si può aermare che la cinetica produce un

distacco dal comportamento lineare mostrato dalla colonna all'equilibrio. La maniera migliore di evidenziarlo è di sovrapporre i graci della quantità totale di calcite restante in funzione dell'iniezione di acido.

In eetti, per una colonna, lo scostamento dal caso all'equilibrio è appena visibile per le cinetiche più rapide; diventa netto solo per le cinetiche lente e molto lente. In gura 6.10sono perciò comparati i graci della quantità totale di calcite restante con chimica all'equilibrio e con le cinetiche caratterizzate da Da di 18.8 e 9.4. 0 50 100 150 100 80 60 40 20 0 moli di HCl iniettate [x 100] % Q Q0 Da: Equilibrio 18.75 9.38

Figura 6.10: Quantità totale di calcite restante nel caso di equilibrio e cinetica molto lenta (Da piccoli). Perdita della proporzionalità tra acido iniettato e calcite dissolta.

Ricapitolando

È stata introdotta e discussa la reazione di dissoluzione. Uno studio preliminare su colonna omogenea ha permesso di comprendere il comportamento di un sistema inizialmente omogeneo in caso di chimica all'equilibrio e poi con cinetica, nonché di familiarizzare con alcuni graci che ricorreranno nel seguito.

Possiamo a questo punto passare al dominio bidimensionale, presentando dapprima il caso omogeneo, per poi introdurre la variabilità spaziale.