• Non ci sono risultati.

Analisi dell’evoluzione delle caratteristiche dell’oLED mediante misure di rumore 53

Nel paragrafo precedente abbiamo riportato un’analisi tradizionale del rumore degli oLED che utilizza unicamente il suo andamento in frequenza, cio`e la densit`a spettrale di potenza. Nel caso dei dispositivi organici, come detto in precedenza, la loro affidabilit`a e durata `e tuttora un fattore limitante al loro utilizzo industriale. E’ quindi interessante chiedersi se si possono utilizzare le misure di rumore per individuare le variazioni microscopiche della conduzione in funzione del tempo per studiare l’origine dell’inaffidabilit`a e del degrado.

A questo scopo si sono misurate le fluttuazioni della corrente circolante nell’oLED al variare del tempo mantenendo la polarizzazione costante. Nella figura 4.9 `e riportato un esempio di andamento della corrente al variare del tempo quando si lavora a polarizzazione medio-alte (VD = 8 V, ID ∼= 108 µA e luminescenza di circa 10 cd/m2) per un oLED con l’elettrodo di catodo realizzato in Ca/Al1.

Appena applicata la tensione di polarizzazione (sezione a della figura) il valore rms del rumore `e di circa 85 nA. Dopo un paio di minuti la situazione `e radicalmente cambiata come mostra la sezione b della stessa figura. Sebbene la corrente media non cambia significati-vamente le fluttuazioni ad esse sovrapposte hanno subito un improvviso aumento e si sono portate ad un valore rms di circa 1800 nA, venti volte maggiore del valore iniziale.

La forte variazione del rumore misurato pu`o essere associato ad un cambiamento a livello microfisico, con l’attivazione di un nuovo percorso conduttivo con una differente statistica di trasporto all’interno del polimero. Anche in questo caso, per assicurarsi che la misura non fosse influenzata da percorsi conduttivi parassiti tra anodo e catodo, `e stata eseguita prima una misura in polarizzazione inversa che ha mostrato una corrente inferiore a 1 µA con campi elettrici di 1 MV/cm, corrispondenti a circa 16V.

Nella figura 4.10 `e ben evidenziato la maggiore efficacia e sensibilit`a delle misure di rumore nell’individuare gli istanti temporali in cui avvengono dei cambiamenti nel trasporto di carica all’interno dell’oLED. Nell’esempio riportato il passaggio in uno stato di conduzione provoca

1Grazie alla pi`u bassa funzione di lavoro del calcio, per questi oLED le tensioni di lavoro sono molto minori rispetto a quelle con catodo di solo Al; questo giustifica l’elevata corrente portata dal dispositivo in esame con una tensione di polarizzazione di soli 8 V

CAPITOLO 4 DISPOSITIVI ORGANICI: IL RUMORE COME MEZZO DIAGNOSTICO 4.5

0 100 200 300 40010n

100n 10µ

Tempo [s]

Rumore [A rms]

Corrente

Rumore

100µ 120µ 140µ 160µ 180µ

cambiamento di stato

Corrente [A]

Figura 4.10: Comportamento nel tempo della corrente media circolante nell’oLED (curva inferiore, asse di sinistra) e del rumore prodotto dalla stessa corrente (curva superiore, asse di destra).

un cambiamento della corrente media di meno del 5% (curva in basso) mentre il rumore `e aumentato di circa un ordine di grandezza (curva in alto, su scala logaritmica). La figura mostra inoltre che il polimero pu`o riorganizzare il suo stato di conduzione sia per aumentare che per diminuire la corrente circolante e le sue fluttuazioni.

Analizzare nel tempo le fluttuazioni della corrente nei dispositivi organici pu`o essere di grande interesse quando si vuole correlare le propriet`a di conduzione dei portatori di carica e le modifiche del flusso di corrente con i cambiamenti nella morfologia microscopica del materiale organico attivo dell’oLED. Per esempio, nel caso di polimeri che tendono a cristallizzare o a cambiare il proprio volume a causa del riscaldamento per effetto Joule durante il funzionamento del dispositivo `e possibile indagare le differenze strutturali del materiale prima e dopo la modifica nella conduzione con tecniche di riflettivit`a a raggi X, spettroscopia a raggi infrarossi e imaging all’infrarosso dei breakdown termici.

4.5.1 Analisi dell’evoluzione del degrado degli oLED

Le misure di rumore si sono mostrate molto efficaci anche nell’individuare lo stato iniziale e l’evoluzione del degrado permanente dei dispositivi organici. Per indagare questi processi

`e stato accelerato il degrado degli oLED polarizzandoli in diretta ben sopra alla soglia di luminescenza.

Nella figura 4.11 `e riportato l’andamento della corrente nel diodo quando `e applicata una tensione di 16.25V, corrispondenti ad una corrente di 485 µA e una luminescenza di circa 20 cd/m2. Come `e visibile dalla figura il degrado del polimero si manifesta con impulsi casuali di corrente di durata molto breve (meno del limite di risoluzione temporale del nostro sistema, 1 µs). La frequenza di ripetizione e l’ampiezza degli impulsi aumentano al crescere della tensione di polarizzazione, cio`e dello stress a cui `e sottoposto il dispositivo. Come discusso in [60], ad alte tensioni di polarizzazioni si ha sempre un forte aumento della corrente media prima di un breakdown termico e della distruzione catastrofica del dispositivo. Gli impulsi di corrente mostrati nella figura 4.11 possono perci`o essere considerati come l’indicazione dell’inizio della degradazione irreversibile.

Come vedremo, ciascun impulso di corrente fornisce un contributo bianco allo spettro di rumore e perci`o possono essere identificati con alta sensibilit`a utilizzando le misure della

0.00 0.04 0.08 0.12 0.16 480µ

486µ 492µ 498µ 504µ

C o rr e n te [ A ]

Tempo [s]

Figura 4.11: Andamento temporale della corrente in un oLED sovrapolarizzato a 16.25V

densit`a spettrale di potenza del rumore. La figura 4.12 mostra lo spettro di rumore prodotto da una corrente nella condizione di degrado.

Dal confronto con la figura 4.7 risulta evidente che in questa condizione di lavoro si ha, oltre ad un’intensit`a del rumore maggiore, anche la formazione di una componente constante con la frequenza. Questo rumore bianco `e di circa tre ordini maggiore del rumore shot teorico prodotto dalla corrente media portata dal diodo di ID = 485 µA (i2shot= 1.6 × 10−22A2/Hz).

L’alto valore di rumore bianco misurato `e causato dagli impulsi di corrente mostrati nella figura 4.11 e dovuti alla degradazione dell’oLED . Questo pu`o essere facilmente dimostrato come segue. Assumiamo per semplicit`a che ogni impulso sia assimilabile ad una delta di Dirac di area uguale alla carica Qi portata da esso. Il segnale globale su un largo intervallo di tempo 2T pu`o essere considerato come una successione di impulsi ad istanti ti casualmente distribuiti nel tempo con un tasso medio di occorrenza di λ impulsi al secondo:

i(t) = X2λT

i=1

Qiδ(t − ti) (4.1)

Per calcolare la densit`a spettrale di potenza di questo segnale `e comodo prima quantificare la sua funzione di autocorrelazione:

R(τ ) = hi(t)i(t + τ )i (4.2)

dove il simbolo h·i denota la media temporale (si considera la corrente i(t) ergodica).

Assumendo, come `e ragionevole, l’incorrelazione tra impulsi differenti si ha immediatamente che R(τ ) `e nulla per ogni τ 6= 0. Per τ = 0 l’autocorrelazione corrisponde al valore quadratico medio della corrente i(t) e possiamo calcolare esplicitamente il suo valore con semplici passaggi:

hi2(t)i = lim

T →∞

1 2T

Z T

−T 2λTX

i=1

Q2iδ(t − ti) dt = lim

T →∞

1 2T

X2λT i=1

Q2i = λQ2, (4.3) dove con Q2 si `e indicato il valore quadratico medio della carica portata da un singolo impulso di corrente. La funzione di autocorrelazione `e quindi:

R(τ ) = λQ2δ(τ ) (4.4)

CAPITOLO 4 DISPOSITIVI ORGANICI: IL RUMORE COME MEZZO DIAGNOSTICO 4.5

1 10 100 1k 10k 100k

10-22 10-20 10-18 10-16 10-14

Rumore di corrente [A2 /Hz]

Frequenza [Hz]

Rumore bianco generato dagli impulsi di corrente

Livello teorico di rumore shot

Figura 4.12: Spettro di rumore di un oLED in fase di degradazione permanente (alta polarizzazione diretta). Con la linea tratteggiata `e indicato l’andamento di tipo 1/fa che si avrebbe in caso di assenza degli impulsi di corrente (a = 1.6).

La sua trasformata di Fourier `e la densit`a spettrale di potenza bilatera del segnale i(t):

Si(f ) = F T [R(τ )] = λQ2 (4.5)

che risulta quindi indipendente dalla frequenza e proporzionale al tasso di ripetizione λ degli impulsi [4].

Per valutare quantitativamente questa espressione possiamo stimare il valore di λ dal-l’andamento temporale della corrente (in piccola parte riportato nella figura 4.11). Il valore quadratico medio della carica portata dagli impulsi pu`o essere stimato valutando l’area sot-tesa da ogni impulso di corrente. Nella figura 4.13 `e riportato un tipico impulso di corrente su una scala temporale espansa. La forma del segnale misurato `e corrispondente alla risposta all’impulso del filtro antialiasing posto a monte del campionatore, a conferma che l’impulso di corrente generato dall’oLED pu`o essere ben approssimato da una delta di Dirac. La carica me-dia portata da ogni impulso `e stata stimata considerando l’area sottesa di tipo triangolare2, la durata temporale T = 5 µs costante e fissata dal filtro, e valutando il valore quadratico medio della loro ampiezza.

Per la misura in esame si `e ottenuto:

p

i2 = 9 µA, Q2 ∼= 3 × 10−19C2 e λ = 50 impulsi/s a cui corrisponde una densit`a spettrale di potenza unilatera di 2λQ2 ∼= 2 × 10−19A2/Hz, in buon accordo con il livello di bianco misurato nello spettro di figura 4.12.

Mantenendo il dispositivo nella stessa condizione di polarizzazione di stress il tasso di ri-petizione degli impulsi non cambia significativamente mentre la corrente media portata dal diodo decresce continuamente. La figura 4.14 mostra questa riduzione in funzione del tempo su una scala percentuale a partire dal momento di inizio del degrado. La scala temporale della figura `e di parecchi minuti mentre l’intervallo di ripetizione degli impulsi di corrente `e dell’ordine di decine di millisecondi. Solo verso la fine del processo di degradazione il disposi-tivo arriva a mostrare macroscopicamente gli effetti del degrado nella forma di macchie nere

2Si noti che la presenza del filtro antialiasing non introduce nessun errore nel calcolo della carica media portata da un impulso. Se indichiamo infatti con hf(t) la risposta all’impulso del filtro avremo che l’impulso di carica Q produce un segnale Q · hf(t). L’area di questo segnale `e pari a Q · Hf(0), dove Hf(0) indica la trasformata di Fourier della risposta in frequenza del filtro calcolata in 0. Essendo il filtro di tipo basso Hf(0) = 1 e l’area dell’impulso `e esattamente la carica dell’impulso di corrente.

0 20µ 40µ 60µ 0

1µ 2µ 3µ

FWHM @ 5Ps

A m p ie z z a I m p u ls o [ A ]

Tempo [

P

s]

Figura 4.13: Esempio di impulso di corrente su una scala temporale espansa.

0 5 10 15 19

0 20 40 60 80 100

C o rr e n te [ % ]

Tempo [minuti]

Figura 4.14: Evoluzione temporale della corrente media portata da un oLED durante la degradazione.

La tensione di polarizzazione `e costante.

CAPITOLO 4 DISPOSITIVI ORGANICI: IL RUMORE COME MEZZO DIAGNOSTICO 4.5

1 10 100

100 101 102 103 104

Rumore in eccesso generato dagli impulsi di corrente

Impulsi al secondo (λ)

rispetto al rumore shot

rispetto al rumore 1/f atteso

Figura 4.15: Rumore bianco in eccesso generato dagli impulsi di corrente in funzione del tasso medio di ripetizione λ. La curva superiore si riferisce al rapporto tra il rumore bianco in eccesso e il rumore shot dato dalla corrente stazionaria. La curva pi`u in basso si riferisce al rapporto tra il rumore bianco in eccesso e il rumore 1/fa atteso se non ci fossero gli impulsi di corrente.

e di un aumento della rugosit`a della superficie di catodo. Questi effetti di evaporazione a macchie e delaminazione dell’elettrodo di metallo, in aggiunta a una possibile degradazione del polimero, riducono l’area attiva del dispositivo e di conseguenza sono responsabili della diminuzione della corrente media su scale temporali lunghe.

L’osservazione di una componente di rumore bianca aggiuntiva sovrapposto allo spettro di rumore che l’oLED avrebbe in assenza di degradazione, pu`o essere utilizzata per individuare la soglia di degrado del dispositivo. Grazie alla proporzionalit`a tra la componente bianca dello spettro e il tasso medio di ripetizione e la carica media degli impulsi, l’inizio e l’evoluzione temporale del degrado pu`o essere seguito analizzando lo spettro di rumore nella solo regione ad alta frequenza, per esempio intorno ai 100 kHz, dove l’elaborazione `e molto veloce. Per valutare la sensibilit`a ottenibile misurando il rumore bianco generato dagli impulsi, nella figura 4.15 esso `e rapportato al rumore shot teorico (i2n= 1.6 × 10−22A2/Hz) e al valore atteso del rumore 1/fa se non ci fosse la degradazione che genera gli impulsi di corrente (stimato in i2ec = 3 × 10−21A2/Hz dalla curva tratteggiata nella figura 4.12 alla frequenza di 100 kHz).

Come mostra la figura `e sufficiente un tasso di ripetizione di pochi impulsi al secondo per avere uno spettro di rumore ad alta frequenza di circa un ordine di grandezza maggiore di quello che si ha nella situazione pre-degrado. Le misure di rumore si propongono quindi come un potente tool diagnostico per individuare con efficacia l’inizio del processo di degra-dazione. Quando al variare della polarizzazione o del tempo si individua una deviazione del rumore rispetto all’andamento 1/fa (o del rumore shot) `e possibile interrompere la misura e realizzare tutte le analisi strutturali o spettroscopiche per investigare le ragioni che hanno portato all’inizio del degrado, prima che i danni microscopici si sommino per produrre un effetto macroscopico o una catastrofica distruzione del dispositivo.

Si noti che un sistema di rilevamento del degrado basato sull’individuazione degli impulsi di corrente nel tempo con un meccanismo a soglia sarebbe molto pi`u difficile da realizzare perch´e deve essere in grado di rilevare impulsi molto veloci di ampiezza casuale di qualche microAmpere sovrapposto ad una corrente media di centinaia di µA e a un rumore a bassa frequenza (1/fa) che rende molto delicata la scelta della soglia.

Doppio amplificatore a

transimpedenza a capacit` a

commutate per misure a basso rumore

Come visto nel capitolo 1 le sorgenti di rumore dei dispositivi elettronici sono usualmente investigate mediante le fluttuazioni casuali della corrente circolante in essi. La tecnica tra-dizionale per misurare un segnale di corrente utilizza un amplificatore a transimpedenza che converte la corrente in una tensione mediante una resistenza RF posta in retroazione ad un amplificatore di tensione. Questo schema `e anche utilizzato dal front-end di corrente dell’a-nalizzatore di spettro a correlazione per realizzare il singolo canale ed `e stato analizzato nel paragrafo 2.4.1. In quella sede si `e mostrato che tutti i parametri caratteristici dell’amplifi-catore (rumore, banda, stabilit`a, massima corrente continua gestibile) sono determinati dal valore della resistenza RF. Questo porta a vincoli opposti sul suo valore: da una parte la si vorrebbe la pi`u grande possibile per ridurre il rumore, dall’altra valori piccoli permettono di gestire correnti pi`u elevate e di avere una banda maggiore.

L’introduzione di reti ausiliare per evitare che la corrente di polarizzazione scorra nella resistenza di feedback non aiuta a migliorare le prestazioni di rumore del circuito. Infatti, sebbene in questo caso si possa fissare RF indipendentemente dalla corrente continua, i com-ponenti attivi della rete ausiliaria risultano pi`u rumorosi della resistenza di feedback che si avrebbe senza l’aggiunta della rete ausiliaria1 oppure sono richiesti valori di induttanza non fisicamente realizzabili [14]. Nei soli casi in cui la scelta di RF `e fissata da problemi di stabilit`a dovuti ad un’elevata capacit`a del DUT, si pu`o rilassar questo vincolo usando una tecnica di bootstrap [44]. Connettendo infatti un buffer a guadagno unitario tra i due terminali del DUT,

`e possibile aumentare l’impedenza del DUT mostrata all’amplificatore a transimpedenza e di rendere la stabilit`a di quest’ultimo sostanzialmente indipendente da esso. La scelta della re-sistenza RF `e comunque limitata dalle capacit`a parassite delle connessioni e dalla capacit`a di ingresso del circuito che realizza il bootstrap. L’impossibilit`a di ottimizzare ai soli fini del rumore la scelta di RF pu`o impedire di misurare i bassissimi livelli di rumore ottenibili dai moderni dispositivi e materiali elettronici.

L’analizzatore a correlazione presentato al capitolo 2 si `e dimostrato un eccellente stru-mento per superare i limiti di sensibilit`a degli schemi tradizionali ma si pu`o utilizzare quando valgono due precise condizioni: si `e interessati solamente ad un’analisi spettrale del rumore e durante la misure il rumore si pu`o ragionevolmente considerare stazionario. Queste condizioni

1In questa analisi si `e supposta la tensione di alimentazione della rete ausiliaria uguale a quella dell’amplificatore a transimpedenza.

CAPITOLO 5 DOPPIO AMPLIFICATORE A TRANSIMPEDENZA A CAPACIT `A COMMUTATE 5.1

          

  

       



   

   

   

  

  

 

 

 

 

 

    

Figura 5.1: Schema completo del doppio amplificatore a transimpedenza a capacit`a commutate.

sono imposte dalla necessit`a dello strumento di mediare il segnale proveniente dal DUT per incrementare la sua sensibilit`a (vedi par. 2.8, pag. 26).

Qualora fossimo interessati all’andamento del rumore del DUT al variare del tempo, per esempio come nel caso di rumore di tipo RTS (par. 1.4 e capitolo 6), oppure le caratteristiche del dispositivo sono tali da non permettere di mediare a lungo il suo rumore, per esempio per fenomeni di degrado o di riscaldamento per effetto Joule, `e necessario studiare tecniche alternative per poter migliorare le prestazioni dello schema tradizionale a transimpedenza. A nostra conoscenza non esistono schemi di misura che permettono di migliorare la sensibilit`a delle misure di rumore in funzione del tempo se non nel caso particolare in cui il DUT sia un dispositivo amplificante e possa essere utilizzato come primo stadio amplificatore del sistema di misura [68].

Nei paragrafi successivi sar`a proposta una tecnica di misura innovativa che consente di mi-gliorare la sensibilit`a delle misure temporali di rumore anche di ordini di grandezza rispetto ad un amplificatore a transimpedenza tradizionale, purch´e il DUT (attivo o passivo) sia connesso al front-end dello strumento con una capacit`a parassita limitata e le correnti di polarizzazione siano inferiori a circa 50 µA.

5.1 Amplificatore a transimpedenza a capacit` a commutate

L’idea base sviluppata per ottenere il miglioramento delle prestazioni `e quella di sostituire la sorgente di rumore dominante dell’amplificatore a transimpedenza, la resistenza di retroazione, con un condensatore, ossia un elemento passivo non rumoroso. Ovviamente affinch´e questa soluzione funzioni sono richieste una serie di importanti modifiche al circuito che portano allo schema di figura 5.1 e che andremo ora a commentare brevemente .

In primo luogo, l’amplificatore a transimpedenza con il condensatore in retroazione di-venta uno stadio integratore. E’ necessario perci`o aggiungere un secondo stadio derivatore (amplificatori 2A e 2B della figura) per riottenere il segnale di partenza con una funzione di trasferimento constante in frequenza. Anche nello stadio derivatore il componente di guada-gno `e un condensatore non rumoroso che non degrada le prestazioni di rumore del sistema.

Le resistenze Rf A e Rf B presenti negli stadi derivatori operano su un segnale di corrente gi`a amplificato dalle capacit`a Ci e Cd. Infatti, in un tempo dt la corrente I del DUT provoca un cambiamento della tensione vi all’uscita dell’integratore pari a dvi = I dt/Ci; questa stessa variazione di tensione `e applicata sulla capacit`a Cd generando una corrente nel derivatore di Id = Cddvi/ dt = Cd/CiI. In questo modo, l’integratore e il derivatore rappresentati nello schema possono essere anche visti come un amplificatore di corrente non rumoroso con guadagno Cd/Ci posto prima di un amplificatore a transimpedenza tradizionale.

Una seconda, pi`u importante, modifica `e imposta dalla corrente di polarizzazione del DUT.

Questa corrente scorre interamente nella capacit`a dell’integratore caricandola via via sempre di pi`u. Per evitare la saturazione degli amplificatori operazionali `e necessario quindi scaricare periodicamente la capacit`a Ciintroducendo, per esempio, un interruttore in parallelo ad essa2. L’operazione di scarica deve avere un periodo di ripetizione, TSW, funzione del valore della corrente stazionaria del DUT, Ibias, e della tensione massima che pu`o gestire l’operazionale, Voutmax, in base alla relazione:

TSW = (Voutmax− Vbias) Ci

Ibias (5.1)

L’effetto di questa operazione di scarica della capacit`a `e doppiamente deleterio: non solo impedisce un’analisi nel tempo continua del rumore del DUT ma provoca anche una modula-zione del segnale che produce aliasing nel dominio delle frequenze, impedendo anche un’analisi spettrale accurata.

Per superare questo limite si utilizzano due integratori ai terminali opposti del DUT, come indicato nella precedente fig. 5.1, e che perci`o operano sul medesimo segnale di corrente. Gli interruttori presenti su ciascun integratore sono attivati ancora periodicamente ogni TSW ma sfasati di TSW/2 uno rispetto all’altro. In questo modo quando si scaricano le capacit`a su un canale, e quindi su di esso si perde l’informazione del segnale proveniente dal DUT, sull’altro canale stiamo integrando correttamente il segnale mantenendone tutta l’informazione. Per ricostruire continuamente nel tempo il segnale di interesse `e sufficiente prendere il segnale per mezzo periodo da un canale e per il rimanente mezzo periodo sull’altro canale.

Il meccanismo di ricostruzione `e schematizzato nella figura 5.2 nel caso di segnale pro-veniente dal DUT sinusoidale. Nella parte superiore della figura `e rappresentata l’uscita del derivatore del canale A: l’andamento `e fedele al segnale sinusoidale di ingresso ma ogni TSW la chiusura dell’interruttore provoca la perdita del segnale3. Durante questa fase si ha per`o disponibile il segnale sull’altro canale (curva centrale) e quindi prendendo alternativamente le uscite dei due canali `e possibile ricostruire esattamente il segnale originale. La combinazione dei due segnali pu`o essere realizzata senza difficolt`a campionando le uscite dei due canali e poi combinandole digitalmente.

La composizione digitale del segnale complessivo consente anche di introdurre semplici al-goritmi per rendere trascurabile l’inevitabile differenza tra i guadagni dei due canali e quindi la deformazione nel tempo e nelle frequenze del segnale del DUT causato dal continuo pas-saggio da un canale all’altro. L’algoritmo attualmente utilizzato esegue automaticamente una calibrazione dei canali sfruttando il fatto che per gran parte del periodo TSW di ripetizione di

2La scarica del condensatore dell’integratore impone, tramite l’operazionale, anche la scarica del condensatore Cd presente nel derivatore.

3Idealmente la chiusura dell’interruttore scarica istantaneamente la capacit`a di integrazione provocando uno

3Idealmente la chiusura dell’interruttore scarica istantaneamente la capacit`a di integrazione provocando uno